Direct Searches for Dark Matter with XENON

The Mainz XENON group is part of the research group on experimental particle and astroparticle physics ( ETAP: Experimentelle Teilchen und AstroteilchenPhysik) in the Institut für Physik at the Johannes Gutenberg-Universität.

Our research is focused on Dark Matter detection. Astrophysical observations tell us that about 85% of all matter in the Universe consists of a new and as yet unknown type of matter, so-called non-baryonic Dark Matter. Not only does Dark Matter not emit light, as the name suggests, but it is also completely transparent. What is the nature of this elusive Dark Matter? This is one of the central questions in physics today. We are addressing this question by searching for rare interactions of Dark Matter particles with regular matter in sensitive detectors. These detectors for direct search of Dark Matter are located deep underground to shield them from cosmic rays.

Official XENON homepage

Overview: Direct Searches for Dark Matter with XENON
(located at ETAP pages on research)

Poster on Dark Matter Search with XENON1T

Poster on XENON1T muon veto system


18. Mai 2017 (for the official english version, visit the official XENON homepage)

XENON1T: Das empfindlichste "Auge" für Dunkle Materie

"Das weltbeste Resultat zu Dunkler Materie - und wir stehen erst am Anfang!" So freuen sich Wissenschaftler der XENON-Kollaboration über die ersten Ergebnisse ihres neuen Instruments, die sie heute (18. Mai 2017) auf einer Konferenz vorstellten. Mit nur 30 Tagen Messzeit erweist sich XENON1T als der weltweit empfindlichste Detektor für Dunkle Materie.

Verschiedene astronomische Beobachtungen legen die Anwesenheit von Dunkler Materie als wesentlichen Bestandteil des Universums nahe. Sie müsste rund fünfmal häufiger sein als normale, sichtbare Materie. Der direkte Nachweis Dunkler Materie und die Erforschung ihrer Eigenschaften ist deshalb eines der wichtigsten Ziele der modernen Teilchenphysik. Dazu suchen Forscher mit extrem empfindlichen Detektoren nach Wechselwirkungen der Dunkle-Materie-Teilchen mit normalen Teilchen. Diese extrem schwachen Wechselwirkungen haben sich aber bisher der Entdeckung entzogen, was die Wissenschaftler dazu zwingt, immer noch empfindlichere Detektoren zu bauen.

Die XENON-Kollaboration, die mit dem XENON100-Experiment jahrelang führend war, hat sich nun mit ihrem neuen Instrument XENON1T an der Spitze zurückgemeldet. Die Daten der ersten 30 Messtage zeigen, dass dieser Detektor den bisherigen Rekord für die geringste Radioaktivität deutlich verbessert. Diese ist um viele Größenordnungen niedriger als in der normalen irdischen Umgebung. Radioaktivität erzeugt Störsignale, vergleichbar mit dem Licht der Städte, das den Blick auf den Sternenhimmel beeinträchtigt. XENON1T verwendet etwa 3200 kg des flüssigen Edelgases Xenon als Detektormaterial und ist damit der größte jemals gebaute Detektor seiner Art. Aufgrund der Kombination von Größe und Reinheit hat XENON1T in den kommenden Jahren sehr gute Chancen, Dunkle-Materie-Teilchen zu finden.

Astronomen bauen ihre großen Teleskope auf abgelegene hohe Berge, wo die Nächte dunkel sind. Um das radioaktive "Störlicht" zu entfernen, muss man anders vorgehen: Gut geschützt vor kosmischer Strahlung ist das XENON1T-Instrument seit Herbst 2016 im italienischen Gran-Sasso-Untergrundlabor im Messbetrieb. Was man davon in der unterirdischen Experimentierhalle sehen kann, sind ein riesiger stählerner Wassertank und ein dreistöckiges durchsichtiges Gebäude daneben. Darin ist die für den Betrieb des Experiments notwendige Technik untergebracht. Der Wassertank ist mit hochreinem Wasser gefüllt, das den Detektor in seiner Mitte vor Strahlung aus der Umgebung und restlicher kosmischer Strahlung schützt. Der eigentliche Detektor, eine sogenannte Flüssig-Xenon-Zeit-Projektionskammer (time projection chamber: TPC), befindet sich in einem Isoliergefäß, das dafür sorgt, dass das flüssige Xenon -95°C kalt bleibt - ohne dass das Wasser gefriert.

Aber selbst perfektes Abschirmen gegen äußere Einflüsse ist nicht ausreichend, weil alle Materialien auf der Erde geringe Spuren von natürlicher Radioaktivität enthalten. Um möglichst wenig Radioaktivität in den Detektor einzubringen, war es daher erforderlich, alle verwendeten Materialien sorgfältig auszuwählen, zu verarbeiten und zu reinigen. Nur so gelang es, das Zentrum von XENON1T zu einem der reinsten Orte des Universums zu machen. Dies ist Voraussetzung, die extrem seltenen Signale von Dunkler Materie zu finden.

Wenn ein Teilchen in flüssigem Xenon wechselwirkt, entstehen winzige Lichtblitze. Die XENON-Wissenschaftler registrieren diese und bestimmen daraus den Ort der Wechselwirkung und die Energie des Teilchens - und ob es Dunkle Materie sein könnte oder nicht. Infrage dafür kommen nur Ereignisse im Zentrum des Detektors, das etwa 1 Tonne Xenon umfasst. Das äußere Xenon bildet eine zusätzliche Abschirmschicht gegen restliche Spuren von Radioaktivität im Material.

Schon mit den in den ersten 30 Tagen gesammelten Daten übertrifft die Empfindlichkeit von XENON1T alles bislang dagewesene. XENON1T ist damit in bisher unerforschtes Terrain eingedrungen. Es hat dort aber noch keine Dunkle Materie gefunden, hat allerdings auch gerade erst angefangen zu messen. XENON1T ist in einer ausgezeichneten Position im Rennen um die Entdeckung der Dunklen Materie. In der internationalen XENON-Kollaboration arbeiten Wissenschaftler aus den USA, Deutschland, Italien, der Schweiz, Portugal, Frankreich, den Niederlanden, Israel, Schweden und den Vereinigten Arabischen Emiraten zusammen. Aus Deutschland sind das Max-Planck-Institut für Kernphysik (MPIK) in Heidelberg, die Albert-Ludwigs-Universität Freiburg, die Johannes Gutenberg-Universität Mainz und die Westfälische Wilhelms-Universität Münster beteiligt.

Die Mainzer Arbeitsgruppe beteiligt sich an den XENON-Experimenten sowohl bei der Datenanalyse und den Simulationen als auch bei der Detektortechnologie: Hier sind die Astroteilchenphysiker insbesondere für den Myon-Detektor verantwortlich und am Xenon-Lagersystem ReStoX sowie am inneren Detektor beteiligt.

→ Link zur Veröffentlichung auf arxiv ←

Das XENON1T-Experiment im Gran-Sasso-Untergrundlabor mit Wassertank zur Strahlungsabschirmung (links) und Technikgebäude (rechts). © Roberto Corrieri, Patrick De Perio (XENON-Kollaboration)
Wissenschaftler beim Aufbau der Zeit-Projektionskammer. © Enrico Sacchetti (XENON-Kollaboration)
(a) Calibration data for background, using
222Rn ( blue , electronic recoil (ER)).
(b) Calibration data for signal events, using
241AmBe ( red, nuclear recoil (NR)).
(c) Dark Matter search data for the current run
The spin-independent WIMP-nucleon cross section limits as a function of WIMP mass at 90% confidence level (black) for this run of XENON1T. In green and yellow are the 1- and 2σ sensitivity bands. Results from LUX (red), PandaX-II (brown), and XENON100 (gray) are shown for reference.