Possible topics for Bachelor/Master theses in the XENON-Mainz group

January 2017

The list of topics presented hereafter is not a permanent one: it is supposed to give an idea of what kind of work can be done in our group. If you are interested in a particular topic, just pass by our office or send us a mail:

Prof. Dr. Uwe Oberlack (ask for an appointment by mail before) E-Mail : oberlack@uni-mainz.de Tel. : 25167 Office : Staudinger Weg 7, Raum 04-691

<u>Pierre Sissol</u> (PhD student) Topic : Mainz TPC E-Mail : sissol@uni-mainz.de Tel. : 24151 Office : Staudinger Weg 7, Raum 04-621

<u>Stefan Schindler</u> (PhD student) Topic : XENON1T E-Mail : schindler@uni-mainz.de Tel. : 24151 Office : Staudinger Weg 7, Raum 04-621

More information can be found on our website: http://xenon.physik.uni-mainz.de/

Christopher Geis (PhD student) Topic : XENON1T E-Mail : geisch@uni-mainz.de Tel. : 25168 Office : Staudinger Weg 7, Raum 04-525

Dr. Matteo Alfonsi (Post-Doc) Topic : Compton Telescope E-Mail : malfonsi@uni-mainz.de Tel. : 23667 Office : Staudinger Weg 7, Raum 04-317

Possible topics

- <u>General:</u> Data analysis (Python / C++)
 - Multiple analysis topics available: Simulations, WIMP physics, detector physics, energy scale, backgrounds and efficiencies
 - Developing a background model using Bayesian statistics and Dirichlet processes
 - Implementation of a WIMP velocity independent analysis using Bayesian inference
- XENON1T and its Muon Veto, XENONnT and its Neutron Veto:
 - Data / Monte Carlo (MC) comparison of XENON1T Muon Veto
 - Feature implementation and modification of the XENON1T Muon Veto Event builder
 - Development of an event display for muon events in the XENON1T Muon Veto
 - Development of a Neutron Veto, based on liquid or plastic scintillator for XENONnT
- Development of future multi-ton liquid xenon detectors:
 - Field simulations for a single-phase radial field xenon Time Projection Chamber (TPC) (COMSOL)
 - Comparison of the advantages and disadvantages between dual-phase TPCs and radial field TPCs (Geant4)
- MainzTPC:
 - Hardware
 - $\ast\,$ Test of Ar-37 as an internal calibration source for liquid xenon TPCs
 - $\ast\,$ Data acquisition (DAQ): Evaluation of a fast FADC board
 - * Study of PMT electronics reponse using a picosecond-laser (timing measurements, afterpulses)
 - $\ast\,$ R&D of the field cage high voltage performance for application in dual-phase xenon TPCs
 - Simulations
 - * Study of the capability of the TPC to identify and reject multiple-scatter events (Geant4)
 - * Estimation of the light collection efficiency of the MainzTPC and comparison with actual measurements (Geant4)
- Compton Telescope: Simulations and Hardware
 - Compton sequence reconstruction (improvements using coarse electron tracking)
 - Image reconstruction with a combined Compton / pair telescope
 - Data analysis of SiPM operation in liquid xenon
 - Simulation of the charge readout of a liquid xenon TPC (COMSOL)