Bachelorarbeit

Charakterisierung von Photomultiplier Tubes hinsichtlich deren Verwendung in Flüssig-Xenon Zeitprojektionskammern

von

Thomas Jennewein

Bachelorarbeit in Physik vorgelegt dem Fachbereich Physik, Mathematik und Informatik (FB 08) der Johannes Gutenberg-Universität Mainz am 5.4.2012

Gutachter: Prof. Dr. Uwe Gerd Oberlack
 Gutachter: Prof. Dr. Heinz-Georg Sander

Ich versichere, dass ich die Arbeit selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt, sowie Zitate kenntlich gemacht habe.

Mainz, den 5.4.2012

Thomas Jennwein Institut für Physik Johannes Gutenberg-Universität Mainz Staudingerweg 7 D-55129 Mainz jennewet@students.uni-mainz.de

Inhaltsverzeichnis

1.	Einführung	1
2.	Theoretische Grundlagen zu Photomultiplier Tubes (PMTs)2.1. Allgemeines	2 2 2 3 4 5 6
3.	Herstellung einer neuen PMT Base 3.1. Spannungsteiler 3.2. Neue PMT-Base	8 8 9
4.	Versuchsaufbau	12
5.	Analysemethoden5.1. Programmteil I5.2. Programmteil II	14 15 19
6.	 Auswertung der PMTs 6.1. Hamamatsu R9288 6.1.1. Anstiegs-, Abklingzeit, Pulsbreite und Verteilung des Maximalwerts 6.1.2. Verstärkung in Anzahl der Elektronen 6.1.3. Dunkelrate 6.2. Hamamatsu R6041-06 6.2.1. Anstiegs-, Abklingzeit, Pulsbreite und Verteilung des Maximalwerts 6.2.2. Verstärkung in Anzahl der Elektronen 6.2.3. Dunkelrate 6.3. Vergleich zwischen den PMTs 	21 21 26 30 31 31 32 34 35
7.	Zusammenfassung und Ausblick: Anwendung in Flüssig-Xenon-TPC	37
Α.	AnhangA.1. GraphenA.2. DatenblätterA.3. Programmcode	39 39 52 61
В.	Abbildungs- und Tabellenverzeichnis	68
C.	Quellen	70

1. Einführung

1. Einführung

Schon seit mehr als 30 Jahren wird Xenon in Detektoren als Szintillator im Bereich der Teilchenund Astrophysik verwendet. Xenon eignet sich sehr gut als Detektormaterial, da es unter den Edelgasen die größte Massenzahl und Dichte aufweist, was zu einem hohen Bremsvermögen von Strahlung führt.

Bei der Wechselwirkung mit flüssigen Edelgasen entsteht spontanes Szintillationslicht (S1 Signal) und es werden Atome ionisiert. Die dabei frei gewordenen Elektronen können nun über eine angelegte Spannung wegdriften und mittels proportionaler Szintillation detektiert werden (S2 Signal). Detektoren, die beide Signale effizient aufzeichnen, haben den Vorteil, dass man dadurch mehr Informationen über das eingegangene Teilchen erhält, da sowohl ein Lichtsignal, als auch ein Ladungssignal verfügbar ist. Man kann damit beispielsweise bestimmen ob es sich bei der Wechselwirkung um einen Kernrückstoß oder eine Streuung an der Elektronenhülle handelt.

Da Xenon bei Standarddruck erst bei 165.05 K flüssig wird und extrem rein sein soll, damit die Elektronen mit hoher Wahrscheinlichkeit detektiert werden, müssen alle Bestandteile innerhalb der Kammer bestimmte Anforderungen erfüllen. Gleiches gilt selbstverständlich auch für die in dieser Arbeit behandelten, Photomultiplier Tubes und ihren Basen (Spannungsteiler-Leiterplatine). Konkret untersucht diese Arbeit die Eigenschaften von "Single-Photon" Pulsen, wie z.B. die Anstiegszeit und die Verstärkung von verschiedenen Photomultiplier Tubes bei verschiedenen Betriebsspannungen. Dazu wurde ein Analyse Programm geschrieben, welches die wichtigsten Informationen aus den gemessenen Signalen extrahiert. Anhand der Daten soll untersucht werden, welche Eigenschaften die PMTs haben, die in einer Flüssig-Xenon Zeitprojektionskammer (engl. Time Projection Chamber), die hier in Mainz gebaut wird, eingesetzt zu werden. Dabei wurde zusätzlich zu den Messungen eine neue Basis erstellt, da nur noch wenige alte für den Betrieb der Tubes übrig geblieben waren.

Am Ende soll noch ein kurzer Ausblick darauf gegeben werden, wie die TPC in Mainz aussieht und wozu diese gebaut wird.

Vergleiche [3] und [4]

2. Theoretische Grundlagen zu Photomultiplier Tubes (PMTs)

2.1. Allgemeines

Um das schwache Lichtsignal, das bei einer Vielzahl von Strahlungsdetektions- und Spektroskopie Experimenten im Szintillator entsteht zu detektieren, benötigt man Messgeräte die dieses Signal in einen messbaren elektrischen Impuls umwandeln. PMTs erfüllen diesen Zweck sehr gut, da sie im Gegensatz zu Halbleiterdetektoren auch einzelne Photonen detektieren können. Es gibt kommerziell erhältliche PMTs für Wellenlängen mit sensitivem Bereich von Infrarot bis Ultraviolett. Die Außenhülle des PMTs (meistens Glas) ist vakuumiert, so dass Elektronen darin durch angelegte Spannungen effektiv beschleunigt werden können. Im Inneren sind die wichtigsten Komponenten: Die Photokathode und ein System aus Dynoden zur Vervielfachung der ausgelösten Elektronen. Damit erreicht man typischerweise eine Verstärkung von 10^6 - 10^7 . Die Anzahl der Elektronen soll dabei möglichst linear proportional zur Anzahl der eingegangenen Photonen sein.

In der folgenden Abbildung ist das vereinfachte Schema eines PMTs aufgetragen.

Quelle: http://wiki-fp.physik.uni-mainz.de

Abbildung 1: Schematische Zeichnung eines PMTs

2.2. Photon Absorption - Elektron Emission

Trifft ein Photon auf die photosensitive Kathode, so wird es mit einer gewissen Wahrscheinlichkeit in dieser dünnen Schicht absorbiert und sendet ein Elektron aus welches die Energie

$$E = h\nu - \Phi \tag{1}$$

hat.

Dabei ist E die kinetische Energie des Elektrons,h das planksche Wirkungsquantum, ν die Frequenz des Lichts und Φ die Austritsarbeit des Kathodenmaterials. Damit ein Elektron emittiert wird, muss also die Energie des ankommenden Lichtes einen bestimmten Wert übersteigen. Allerdings wird nicht jedes Photon, das ausreichend Energie zur Verfügung hat, von einen Elektron absorbiert, da die Schicht nur sehr dünn und deshalb semi transparent ist.

Ein weiterer Faktor für eine gewünschte Absorptionsrate ist die Wahl des richtigen Kathodenmaterials. Je nach Wellenlänge der Photonen sind unterschiedliche Materialien geeignet.

Von der Austrittsarbeit hängt ab wie stark das thermische Rauschen ist. Ist sie klein, so können thermische Elektronen im Leiterband des Kathodenmaterials energetisch genug sein und als Fehlpulse gezählt werden. Im Schnitt besitzen diese Elektronen bei Raumtemperatur zwar nur etwa 0.025 eV, aber da die Verteilung eine gewisse Breite hat, können die Elektronen an der oberen Grenze erheblich höhere Energien besitzen. Um nun die Effizienz eines Photokathode bei bestimmten Wellenlängen zu kennzeichnen wurde die sog. Quanteneffizienz(QE), $n(\lambda)$ definiert:

$$n(\lambda) = \frac{\text{Anzahl der emittierten Elektronen}}{\text{Anzahl der auf der Kathode aufgetroffenen Photonen}}.$$
 (2)

Wobei λ die Wellenlänge des Lichts ist. Für eine ideale Photokathode wäre $n(\lambda) = 100\%$, aufgrund der vorher genannten Einschränkungenen, wie z.B. ihrer Transparenz, erreichen reale Kathoden eine QE von etwa 20 - 30%.

Vergleiche [1]

2.3. Verstärkung

Die Vervielfachung der Elektronen beruht auf dem Effekt der sekundär emittierten Elektronen. Das heißt: Aufgrund des Feldes im PMT, werden die Elektronen, die an der Photokathode ausgelöst wurden, beschleunigt und treffen, wie in Abb. 1 zu sehen, auf die erste Dynode. Da die Elektronen nun eine höhere Energie haben, lösen sie dort weitere Elektronen aus, proportional zu ihrer Energie. Von dort aus werden nun eine höhere Anzahl an Sekundärelektronen zur zweiten Dynode beschleunigt, an welcher der gleiche Prozess stattfindet. Der Faktor, um den eine einzelne Dynode, die Anzahl der Elektronen verstärkt, ist dabei gegen durch:

$$\delta = \frac{\text{Anzahl der emittierten sekundär Elektronen}}{\text{Anzahl der aufgetroffenen Elektronen}}.$$
(3)

Dieser Faktor sollte groß sein um mit wenig Dynoden ein gut messbares elektrisches Signal zu erhalten. Hierbei werden für konventionelles Dynodenmaterial (BeO, MgO und Cs_3Sb) ein maximaler Faktor von 10 erreicht (für hohe Spannungen zwischen den Dynoden), allerdings ist ein Faktor von 4-6 der Normalfall.

Man kann den Faktor außerdem erhöhen indem man das Dynoden Material dotiert und somit die Potential-Barriere, die beim Übergang der Elektronen ins Vakuum besteht, absenkt. Man erreicht damit eine Verstärkung von ca. 50-60 pro Dynode.

Um nun eine Verstärkung von 10^6 zu erhalten, muss man wie in Abbildung 1 zu sehen mehrere Dynoden hintereinander schalten. Dazu muss die folgende Dynode immer auf einem höheren positiven Potential liegen, als die vorige. Da die ausgelösten Sekundärelektronen eine sehr niedrige Energie haben, ist es sehr einfach diese auf die nächste Dynode zu leiten. Es ergibt sich somit eine Verstärkung bei N Dynoden von:

$$A = \alpha \cdot \delta^N. \tag{4}$$

Dabei ist A die Gesamtverstärkung und α der Anteil der Photoelektronen, die von den Dynoden verstärkt werden. Somit kommt man bei zehn Dynoden mit einer durchschnittlichen Vervielfachung von $\delta = 5$ und $\alpha \approx 1$ auf eine Verstärkung von 5^{10} was in der Größenordnung von 10^7 liegt. Benutzt man nun dotiertes Dynodenmaterial, benötigt man für eine ähnliche Verstärkung nur etwa 5 Dynoden.

Wäre δ eine feste Zahl, so hätte jeder Puls der von einem einzelnen Photoelektron kommt, die gleiche Form und Höhe. Da die Sekundäremission aber ein statistisch verteilter Prozess ist gibt es eine Schwankung um δ herum. Als einfachstes Modell, kann nun angenommen werden, dass diese Schwankung einer Poissonverteilung entspricht. Damit ergibt sich für den Mittelwert δ eine Standardabweichung von $\sqrt{\delta}$ und eine Varianz von $(\frac{\sigma}{\delta})^2 = \frac{1}{\delta}$.

Betrachtet man dies nun für N Dynoden so folgt für die gesamte relative Varianz aus der Poissonstatistik:

$$\frac{1}{\delta} + \frac{1}{\delta^2} + \frac{1}{\delta^3} + \dots + \frac{1}{\delta^N} \approx \frac{1}{1-\delta}$$
(5)

Man sieht, das für $\delta \gg 1$ die Varianz, also die Streuung in der Form der aufgenommenen elektrischen Pulse stark von der Schwankung der Verstärkung der ersten Dynode abhängt, bei der noch am wenigsten Elektronen involviert sind. Außerdem wird klar, je stärker die Verstärkung der einzelnen Dynoden, desto schärfer ist die Verteilung um δ . Vergleiche [1]

2.4. Rauschen und Dunkelpulse

Die häufigste Ursache für ein statistisches Rauschen des PMTs sind die Elektronen die thermisch aus der Photokathode ausgelöst werden. Diese werden wie ein "single Photon" Puls auf dem Oszilloskop aussehen.

Da bei dieser Arbeit genau diese Pulse untersucht werden, allerdings an anderer Stelle, als innerhalb des betrachteten Messfensters auftreten können, sollte man diese möglichst aussortieren, um keinen Fehler bei der Analyse einer solchen Messung zu machen. Darauf wird in Kapitel 5 noch weiter eingegangen. Die Anzahl der thermisch ausgelösten Elektronen ist proportional zur Fläche der PMT-Kathode. Deshalb sollte man den, für die entsprechende Applikation, kleinstmöglichen PMT benutzen. Weiterhin kann man, wie der Name schon vermuten lässt, die Rate der thermisch ausgelösten Elektronen deutlich senken, indem der PMT gekühlt wird.

PMTs sollte man möglichst im Dunkeln lagern, auch wenn keine Spannung angelegt ist. Die Rate der Dunkelpulse steigt, einmal kurz dem Licht ausgesetzt, drastisch an und der PMT muss erst wieder für längere Zeit im Dunkeln liegen, bevor er erneut für die Detektion von kleinen Lichtmengen einsatzbereit ist. Setzt man den PMT mit eingeschalteter Spannung normalem Tageslicht aus, kann dieser durch die hohe Lichtmenge zerstört werden. Ein weiterer Grund für Dunkelpulse ist die Radioaktivität der Stoffe innerhalb des Photomultipliers. Dabei ist der Hauptanteil des aktiven Materials im Glasgehäuse in Form von ⁴⁰K zu finden. Durch β -Zerfall der K-Atome, wird ein kurzer Puls an Tscherenkow-Licht erzeugt, das wiederum Elektronen aus der Kathode auslösen kann. Aus diesem Grund, gibt es, falls die Untergrund-Strahlung besonders niedrig sein soll, PMTs aus sehr schwach radioaktivem Material. Zusätzlich können andere externe Strahlungsquellen, Szintillations- oder Tscherenkow-Licht im Glas erzeugen, wie z.B. den Myonen aus den Luftschauern.

Ein letzter aber wichtiger Punkt in der Betrachtung des Rauschens ist die Entstehung von Nachpulsen, die, wie der Name schon sagt, aufgrund des wirklichen Pulses, nach diesem auftreten. Es gibt zwei Hauptgründe für Nachpulse. Der erste ist, dass innerhalb des Vervielfachungssystems Photonen entstehen, die ihren Weg zurück zur Kathode finden, um dort erneut ein Elektron auszulösen und somit ein zweiter Puls entsteht. Dabei entstehen meistens nur sehr wenige Photonen, so dass der Nachpuls nur sehr klein ist und dem eines Single Photons entspricht. Der zweite Grund für diese Pulse ist ein schlechtes Vakuum in der Röhre. Das Restgas kann dann von den Elektronen ionisiert werden. Die positiv geladenen Ionen driften dann zur Kathode hin. Da die Ionen des Gases viele Photoelektronen auslösen, entsteht dadurch ein sehr großer Nachpuls. Vergleiche [2]

2.5. Single Photon Messung

In dieser Arbeit sollen die Single Photon Pulse der PMTs gemessen werden. Dazu darf nur sehr wenig Licht auf den PMT treffen, so dass nur ein oder garkein Elektron von einem Photon ausgelöst werden.

Bei dieser Messeinstellung, kann man unter anderem die Quanteneffizienz bestimmen. Allerdings ist dazu eine Kalibrierung der Lichtquelle nötig, so dass man weiß, wieviele Photonen emittiert wurden.

Da nicht alle ausgelösten Elektronen auch an der ersten Dynode ankommen, kann man nun mithilfe der im Kapitel 2.3 eingeführten Größe α , die Detektionseffizienz einführen.

Detektionseffizienz =
$$n(\lambda) \cdot \alpha$$
. (6)

Da wir bei unserer Messung ein kurzen Rechteck Puls auf die LED geben, müssen wir sicherstellen, dass dabei nur ein Photon aus der Kathode ausgelöst wird. Man kann mithilfe der Poisson Statistik zeigen: Wenn wir nur bei ca. 5% der Rechteck Pulse die wir auf die LED geben, auch ein Signal vom PMT bekommen, so liegt mit hoher Wahrscheinlichkeit ein Single Photon Puls vor. Die Überlegung dazu lautet wie folgt: Um die Wahrscheinlichkeit auszurechnen, mit der Pulse auftreten gilt nach der Poisson Statistik folgende Formel:

$$P(p,n) = p^n \cdot e^{-p}.\tag{7}$$

Wobei p der Anteil aller Waveforms mit Pulsen ist, n die Anzahl der Photonen die zu einem Puls beitragen und P die Wahrscheinlichkeit. Also ergibt sich für einen Anteil von 0.05, die Wahrscheinlichkeit für 0 Pulse aus 0 Photonen (logischerweise) zu $0.05^0 \cdot e^{-0.05} \approx 95.1\%.$

Die Wahrscheinlichkeit für einen Puls aus einem Photoelektron ist

 $0.05 \cdot e^{-0.05} \approx 4,76\%.$

Also ist die Wahrscheinlichkeit das etwas anderes als Single-Photon Pulse auftreten:

100% - 95.1% - 4,76% = 0.14%.

Also werden bei diesem Anteil von 5% Pulsen in allen Messungen nur sehr wenige Ereignisse enthalten sein, die von mehr als nur einem Photon ausgelöst wurden.

2.6. Erwartete Ergebnisse

Man erwartet bei der Auswertung von den Messungen zu Single Photon Pulsen, Gausskurven, die um den wahren Wert streuen, da der Detektionsprozess, wie vorher beschrieben ein statistischer Prozess ist. Vor allem interessant ist dabei sowohl die Verstärkung und somit die Verstärkung der PMTs, als auch die Anstiegs und Abfallzeit der Pulse bei verschiedenen Betriebsspannungen. Man erwartet eine Starke Korrelation zwischen Maximaler Spannung des Pulses und der Verstärkung, da die Breite der Pulse bei einer Betriebsspannung auch wieder statistisch um einen Wert verteilt sein sollte.

Für die Verstärkung in Abhängigkeit der Betriebsspannung erwartet man bei einem doppelt Logarithmischen Plot einen linearen Zusammenhang. Dies lässt sich aus folgender Überlegung ableiten:

Wir wissen, das δ eine Funktion der Spannungsverteilung zwischen den Dynoden ist. Je höher die Spannung, desto höher ist auch δ . Zusätzlich ist δ abhängig von einem materialspezifischen Koeffizienten k. Somit kann man δ wie folgt definieren:

$$\delta = a \cdot E(U)^k \tag{8}$$

wobei a hier nur eine Konstante und E(U) eine Funktion der Spannung ist. Man kann δ auch über den Strom, der fließt, definieren.

$$\delta_n = \frac{I_{dn}}{I_{d(n-1)}} \tag{9}$$

Hier ist I_{dn} der Strom, der von der n-ten Dynode abfliesst und $I_{d(n-1)}$ der Strom, der von der vorigen Dynode zufliesst. Somit kann man den Anodenstrom zusammenfassen zu:

$$I_A = I_k \cdot \alpha \cdot \delta_1 \cdot \delta_2 \cdots \delta_n. \tag{10}$$

mit I_k als Kathodenstrom. Teilt man nun durch I_k so bekommt man die Verstärkung (Gain) des PMTs. Geht man nun von einem Photomultiplier aus bei dem $\alpha = 1$ und die Spannung zwischen

den Dynoden immer den selben Wert hat, so ergibt sich die Verstärkung $\mu = \frac{I_A}{I_K}$ zu

$$\mu = (a \cdot E^k)^n = a^n \left(\frac{V}{n+1}\right)^{kn} = A \cdot V^{kn},\tag{11}$$

wobei V die Betriebsspannung ist. Hier sieht man, dass der Zusammenhang für einen doppellogarithmischen Plot der Verstärkung gegen die Betriebsspannung linear sein sollte. Da wie schon erwähnt der Maximalwert der Spannung und die Verstärkung sehr stark korreliert sind, sollte sich auch für den Maximalwert der Spannung gegen Betriebsspannung auch wieder ein linearer Zusammenhang ergeben

Vergleiche [5]

3. Herstellung einer neuen PMT Base

3.1. Spannungsteiler

Um einen PMT zu betreiben, muss man ihn an eine Spannungsquelle anschliessen. Hier muss sichergestellt werden, dass jede Dynode auf das richtige Potential gebracht wird. Dabei ist die einfache Regel: Jedes Elektron muss beschleunigt werden, also muss die erste Dynode auf einem positiveren Potential sein als die Kathode und jede weitere Dynode muss auf einem höheren Potential sein als die vorige.

Diese Versorgung kann man nun durch individuelle Spannungsquellen erreichen, die jede Dynode auf ihr entsprechendes Potential bringen.

Allerdings verwendet man im Großteil aller Anwendungen einen Spannungsteiler, um den gewünschten Effekt zu erreichen. Dieser sieht typischerweise für den Betrieb mit positiver Hochspannung wie folgt aus (Abb.2):

Abbildung 2: Schaltplan eines typischen Spannungsteilers

Dabei ist die Photokathode geerdet und über die Widerstände erhöht sich die Spannung, die an jeder Dynode anliegt bis zu ihrem Maximum, an der Anode. Die Spannungsverteilung an den Dynoden muss fest sein, daher muss der Strom der über den Spannungsteiler läuft groß sein, im Gegensatz zu den Strömen die in der Röhre fließen, wenn Photonen auf die Kathode treffen. Dies ist vor allem ein Problem in den letzten Dynoden, da dort sehr viele Elektronen ausgelöst werden was zu einem hohen Strom führt, und deshalb leicht in einer Veränderungen der Spannung resultieren kann. Aus diesem Grunde sind, wie man in der Zeichnung sieht, Kondensatoren an den letzten Dynoden parallel zu den Widerständen geschaltet. Sie geben die nötige zusätzliche Ladung wenn ein Puls kommt ab, und laden sich dann zwischen den Pulsen wieder auf. Es ist zu beachten: Wenn man eine Spannungsänderung zwischen den Dynoden von $\leq 1\%$ erreichen will, muss die Ladung die auf der Kapazität gespeichert werden muss etwa 100 mal größer sein als die Ladung die von dieser Dynode während des Pulses abgegeben wird.

3.2. Neue PMT-Base

Es sollten neue PMT-Bases hergestellt werden. Es waren noch ein Schaltplan und eine ungefähre Anordnung auf einem Fax vorhanden, siehe Anhang (Datenblätter). Allerdings waren diese nicht geeignet, da für die neue TPC noch nicht klar war, ob die PMTs mit positiver oder negativer Hochspannug versorgt werden sollen. Aus diesem Grunde wurde ein neuer Schaltplan erstellt, bei dem dies noch nicht festgelegt war. Somit hat man eine universelle Basis und muss in Zukunft für die entsprechenden PMT-Typen kein neues Design mehr erstellen.

Abbildung 3: Schaltplan des von uns verwendeten Spannungsteilers

Aus der Zeichnung musste ein Stück ausgeschnitten werden, damit alles Relevante erkennbar bleibt. In der Mitte, die rausgetrennt wurde, sind lediglich weitere Dynoden mit Widerständen von 1 M Ω zu sehen. Das Besondere an der Base sieht man auf dem unteren rechten Teil. Dort kann entschieden werden, ob die Kathode auf Ground oder negativer Hochspannung liegt. Lötet man für R5 und R4 einen 10 k Ω bzw. 0 Ω Widerstand ein, so ist die Schaltung für den Betrieb von positiver Hochspannung zu gebrauchen. Verbindet man hingegen R6 und R3, so ist negative HV anzulegen.

Aufgrund der Anforderung in der TPC (hochvakuumfest, ca -100° C bis 70° C temperaturfest) war außer dem Layout noch zu klären, aus welchem Material die PCB (Printed Circuit Board) und die Komponenten sein müssen, die darauf anzubringen sind.

Dabei gilt für die Platine folgendes:

- Material: ROGERS3003, Keramik-Teflon Verbund
- Leiterbahnen: $500 \mu m$ Abstand und $200 \mu m$ Breite
- Kein Lötstopplack
- Vergoldetes Kupfer als Leiter
- Einlagig
- Die Löcher sind durchkontaktiert

Aus der Schaltskizze ließ sich nun ein Layout erstellen(Abb. 4(a)) und mit den gelisteten Anforderungen die tatsächliche Base herstellen(Abb. 4(b))

(a) Layout Skizze

(b) Foto der gelieferten Base

Abbildung 4: PMT-Base(unbestückt)

Wie man sieht ist die Base nun aber noch unbestückt. Die Teile zur Bestückung müssen ebenfalls die gleichen Vorraussetzungen erfüllen, wie die Base. Standard SMD-Widerstände und SMD-Kondensatoren sind geeignet. Auch die Pins die man in den Löchern der Platine einlötet sind aus vergoldetem Nickel, welches für diese Temperaturen geeignet ist. Die Füße der PMTs werden nachher in die Pins gesteckt. Die komplett bestückte und einsatzbereite Platine ist in Abb. 5 zu sehen.

3. Herstellung einer neuen PMT Base

Abbildung 5: Foto der fertigen Base

4. Versuchsaufbau

Abbildung 6: Schematischer Aufbau Typ Pulsgenerator: PHILIPS PM5786B pulse generator 1 Hz - 125 MHz risetime 2 ns- 0,1 s Typ Oszilloskop: Agilent technologies infinium DS09254A Digital Storage Oscilloscope 2,5 GHz 20 GSa/s

In Bild 6 sehen wir den schematischen Versuchsaufbau. Man legt Hochspannung (7(a)) an den PMT (7(b)) an. Nachdem sich das Feld innerhalb der Röhre stabilisiert hat, kann man die Messung starten. Dazu wird der Pulsgenerator (7(a)) mit dem Oszilloskop und der LED verbunden. Das Licht der LED wurde über einen Lichtleiter (7(b)) in die Box, in der der PMT stand, eingespeist.

(a) Pulsgenerator und HV-Versorgung

(b) PMT und Lichtleiter in der geöffneten Box

Abbildung 7: Fotos des Aufbaus

4. Versuchsaufbau

Mithilfe des Pulsgenerators wird ein Rechteck-Puls an die LED angelegt. Die von uns verwendete LED war eine UV-LED. Weitere Angaben zu dieser befinden sich im Anhang (Es ist die 74-UV). Der zweite Ausgang des Pulsgenerators führt zum Oszilloskop, so dass man auf diesen Puls triggern kann. Die Breite dieses Spannungspulses sind 80ns und kommen mit einer Frequenz von etwa 666Hz. Wie schon in der Theorie beschrieben, kann man, anhand der Poisson-Statistik zeigen, dass, wenn in nur 5% der so aufgenommenen Daten tatsächlich einen Puls vorhanden ist, die Wahrscheinlichkeit für ein Single-Photon Puls sehr hoch ist. Um dies zu erreichen, varrieren wir den Spannungswert des angelegten Pulses bis dies der Fall war. Für die von uns verwendete UV-LED war das bei etwa 2.5 V. Die LED war dabei $(6.8 \pm 0, 1)$ cm von dem PMT entfernt, was in einem Lichtpunkt auf der Kathode mit Durchmesser (1.5 ± 1) mm resultiert. Ein solcher Puls ist in Abb. 8 zu sehen.

Abbildung 8: Rechteckpuls des Pulsgenerators

Mit dem Trigger Signal, und der definierten Breite des Rechteck-Pulses, hat man ein festes Zeitfenster geschaffen, in welchem man Pulse erwartet. Dies liegt auf dem Oszilloskop immer an der gleichen Stelle, da wir auf den Pulsgenerator triggern. Wie dieses Zeitfenster innerhalb einer Messung genutzt werden kann, wird in Kapitel 5 beschrieben.

Die 5% Ereignisse in allen Messungen können allerdings bei unserer Methode nur grob abgeschätzt werden, so dass die Rate an Pulsen bei den gemachten Messungen auch etwas schwankt. Allerdings ist an den Ergebnissen der Messungen zu sehen, dass es sich auch dort zum größten um Single-Photon Pulse handeln muss.

Als letztes wurden noch die Dunkelraten gemessen. Bei diesen wurde kein Licht auf die LED gegeben und am Oszilloskop auf die Signale getriggert. Es wurde die Zeit, die jede Messung gedauert hat, aufgenommen. Dann konnte ganz einfach über den Quotient $\frac{Ereignisse}{Messzeit}$ die Dunkelpulsrate aufgenommen werden. Auch diese Signale sind hauptsächlich Single-Photon Pulse, wie in der Theorie beschrieben.

5. Analysemethoden

Im unten stehenden Bild ist das Oszilloskop Bildschirm mit einer Waveform zu sehen. Dort wurde allerdings auf die Pulse selbst getriggert, damit man sieht wie diese auf dem Oszilloskop aussehen. Diese Daten werden nun in einer binären Datei gespeichert und können dann ausgewertet werden.

Abbildung 9: Oszilloskop Bildschirm mit einer Waveform, Triggerschwelle bei-1, 27 mV

Zur Analyse der Daten, wurde ein zweiteiliges Programm geschrieben. Dieses wird als ROOT-Makro ausgeführt. Im folgenden werden die Analyseschritte in ihrer Reihenfolge dargestellt. In Kapitel 5.1 und 5.2 wird dann detailliert auf diese Schritte eingegangen.

- Programmteil I
 - Messdaten einlesen
 - Tiefpass Filterung der Waveforms
 - Invertierung der Waveform und Baseline-Korrektur
 - Bestimmung des Maximalwerts der Spannung und Definition des Pulsbereichs
 - Speichern der gefilterten, invertierten Waveform, mit Maximalwert, etc.

- Programmteil II
 - Bestimmung der Startparameter für den Fit
 - Fit der Waveform
 - Bestimmung der Rise-, Falltime und den Integralgrenzen
 - Integration für die Verstärkung als Ladung, bzw. Anzahl der Elektronen
 - Erstellen der Histogramme und auffüllen des Trees

5.1. Programmteil I

Messdaten einlesen

Die binären Dateien, in einer Messreihe 40 Dateien, werden eingelesen. Dabei werden das X-Inkrement, die Anzahl der Waveforms und die Punkte pro Waveform eingelesen und gespeichert. Die Waveforms selbst werden als Pseudo-Histogramm in einem ROOT-tree gespeichert, was bedeutet, dass sie in ein Histogramms gespeichert werden, die Y-Achse jedoch nicht die Häufigkeit, sondern die gemessene Spannung wiedergibt.

Tiefpass Filterung der Waveform

Nachdem alle Daten eingelesen wurden, werden sie fouriertransformiert, um so das Frequenzspektrum der aufgenommenen Schwingungen zu sehen. In Abb. 9 sieht man das starke Rauschen einer jeden Waveform. Man sieht auch, dass dieses Rauschen hauptsächlich hochfrequent ist. Mit Hilfe der Fouriertransformation, kann man eine Tiefpass-Filtertung der Waveform durchführen. Dabei wurde ein harter Schnitt bei 350 MHz durchgeführt. Als Beispiel zeigt Abb. 10 eine Waveform vor 10(a) und nach der Anwendung des Filters 10(b). Dabei ist die rote Linie in Abb. der Wert des Frequenzspektrums, ab dem man abschneidet. Warum gerade bei diesem Wert abgeschnitten wird, ist in Abb. 11(b) zu sehen. Dort sieht man die Fouriertransformation eines Fits an die Waveform in Abb. 10(a). Wie man sieht sind fast keine Frequenzanteile oberhalb von 350 MHz einthalten, so dass dies eine gute Filterfrequenz, für den Tiefpass-Filter darstellt.

Abbildung 11: Frequenzspektren

Wie beschrieben, ist bei der gefilterten Waveform das Rauschen deutlich schwächer. Man sieht, dass die Filterung noch einen zweiten Effekt hat, sie verformt die Peaks. Das Maximum des Peaks ist nun von -2.2 mV auf -1.5 mV gesunken.

Damit man sicher sein kann, dass diese Filterung keinen oder nur einen geringen Einfluss auf die Verstärkung hat, ist hier ein Plot von der Ladung der gefilterten - gegen die Ladung der ungefilterten Waveform aufgetragen. Im Idealfall sollte sich eine Winkelhalbierende ergeben, was bedeutet, dass die Fläche für beide gleich ist. Zu diesem Zweck wurde in rot gestrichelt die Winkelhalbierende eingezeichnet.

Abbildung 12: Ladung der gefilterten Waveform gegen die ungefilterte bei 850 V

Wie man sieht ist diese Bedingung sehr gut erfüllt.

Baseline-Korrektur und Invertierung der Waveform

Für die Baseline-Korrektur, werden die ersten 1000 Punkte auf der Waveform aufaddiert und gemittelt, da sich dort kein Puls befindet. Dann wird jeder einzelne Punkt von diesem Wert abgezogen. Das hat folgenden Grund: Es kann zum einen ein Offset beim Messen vorgeliegen. Durch den gemittelten Wert wird nun dieser Offset bestimmt und abgezogen. Zum zweiten werden die Daten invertiert um später mit positiven Pulsen zu arbeiten, was intuitiver ist. Den Offset zu eliminieren ist deshalb wichtig, da er sowohl bei der Berechnung der Fläche als auch bei der Bestimmung des Maximums die Werte verfälscht.

Bestimmung des Maximalwerts der Spannung und Definition des Pulsbereichs

An welcher Stelle das Zeitfenster, welches im letzten Kapitel angesprochen wurde, liegt und wie breit es ist, wird mit folgender Methode bestimmt: Für eine Messreihe (8192 Waveforms) wird die Spannung des Pulsgenerator Pulses erhöht (von ca. 2.5 V auf etwa 3 V), so dass die LED deutlich mehr Licht emittiert. Die Breite des Pulses bleibt hingegen unverändert. Addiert man dort alle so gewonnenen Waveforms auf, und plottet das Ergebnis, ergibt sich ein Graph wie in Abb. 13 zu sehen.

Abbildung 13: Summe mehrerer Waveforms Zur Bestimmung des festen Zeitfensters in dem Pulse stattfinden können

Es ergibt sich ein Puls, dessen Breite das Zeitfenster repräsentiert in dem Pulse der LED auftreten können. Man nimmt den Anfangs- und Endpunkt dieses Pulses als Grenzen für das Zeitfenster. Alle Pulse die von den Photonen der LED stammen, müssen in diesem Zeitfenster liegen. Die Suche des Maximalwertes der Spannung beschränkt sich daher auf dieses Fenster. So werden Dunkelpulse die ausserhalb unseres Fensters liegen nicht beachtet, also aussortiert.

Speichern der gefilterten, invertierten Waveform, mit Maximalwert, etc.

Alle gefilterten und invertierten Waveforms, werden nun im ROOT-tree abgespeichert. Dabei werden zu jeder Waveform die zusätzlichen Informationen gespeichert, die man im bisherigen Programm gefunden hat und welche aus den binären Daten bereits vorhanden waren:

- Maximalwert der Spannung
- X-Wert des Maximalwerts
- Baseline
- Anzahl der Punkte einer Waveform
- X-Inkrement
- Anfangs- und Endwert des Zeitfensters.

5.2. Programmteil II

Bestimmung der Startparameter für den Fit

Mittels einer Schleife wird nun der Startparameter des Fits bestiimt. Dabei läuf die Schleife in negativer X-Richtung die Bins ab und vergleicht den Wert dieses Bins mit dem Maximalwert. Ist der Quotient $\frac{Wert \ des \ Bins \ i-ter \ Stelle}{Maximalwert} < 0.1$ so befindet man sich in der Nähe des Anfangspunktes des Pulses. Dies dient dazu den Startparameter und Anfangspunkt des Fits zu bestimmen. Weiteres wird im nächsten Abschnitt erkärt.

Fit der Waveform

Die Waveform wird anhand folgendert Funktion gefittet:

$$F(x) = A \cdot \left(exp\left(-\frac{x - t_{risestart} - D}{B} \right) - exp\left(\frac{x - t_{risestart} - D}{C} \right) \right)$$
(12)

Dabei ist $t_{risestart}$ der X-Wert den man vorher über die Schleife bestimmt hat, und A,B,C, D die freien Parameter des Fits.

Schaut man sich die Funktion an, so sieht man, das sie je nach Wahl der Parameter für kleine X gegen $\pm \infty$ und für große X gegen 0 geht. Dabei durchstößt sie einmal die X-Achse. An dieser Stelle liegt der Puls. Eine Beispiel Kurve ist in Abb. 14.

Abbildung 14: FitFunktion

Man sieht hier zweimal die gleiche Waveform. Bei der linken Abb. wurde ein passender Startwert gefunden und man sieht das der Puls gut gefittet wurde. Bei der rechten Abb. wurde ein Startwert zu weit links gefunden. Der Algorithmus fittet so eine Nulllinie an, da diese ein kleineres χ^2 ergibt als eine Kurve die zwar den Puls gut annähert, davor jedoch aus dem negativen Unendlichen

kommt. Daher muss, um einen guten Fit zu erhalten, die Startposition des Pulses bereits gut bekannt sein.

Bestimmung der Anstiegs-, Abklingzeit und den Integralgrenzen

Aus den Fitkurven lassen sich nun anhand der Rootfunktionen für Funktionsgraphen, die Anstiegsund Abklingzeit, sowie die Integrationsgrenzen bestimmen. Für die Anstiegs- und Abklingzeit nutzt man die Kenntis über die Lage des Maximums aus, und wie groß es ist. Nun benutzt man die Funktion GetX(Y-Wert, Linke Grenze, Rechte Grenze). Für die Anstiegszeit ist die linke Grenze: vom Maximum aus ein fester Wert in negativer X-Richtung (der groß genug ist um jeden Puls darin aufzunehmen) und die Rechte Grenze der X-Wert des Maximums. Für die Abklingzeit ist die linke Grenze der X-Wert des Maximums und die Rechte Grenze der Letzte Punkt in unserer Waveform. Da Anstiegs- und Abklingzeit als die Zeit definiert sind, die es von 10%-90% des Maximalwertes braucht, berechnet man die Größen einfach, indem man sich die X-Werte an der Stelle $0.1 \cdot$ Maximum und $0.9 \cdot$ Maximum ausgegeben Lässt und so nurnoch die beiden Zahlen voneinander subtrahieren muss um die gewünschte Zeitspanne zu berechnen.

Für die Integralgrenzen, welche im nächsten Abschnitt wichtig sind, gilt das gleiche, nur das man sich für den Start- und Endwert den Wert $0.0001 \cdot Maximum$ ausgeben lässt. Einmal links von Maximum einmal rechts vom Maximum. Aus diesen beiden Werten lässt sich ebenfalls die Breite der Pulse bestimmen indem man sie voneinander abzieht.

Integration für die Verstärkung als Ladung, bzw. Anzahl der Elektronen

Da man die Grenzen bestimmt hat integriert man mit Hilfe der Integral Rootfunktion. Es werden die erzeugten Fitkurven aufintegriert, und die gemessenen gefilterten Waveforms. Die Fläche unter dem Graphen hat die Einheit: [Spannung] \cdot [Zeit]. Um nun auf die gewünschte Größe, die Ladung und somit die Anzahl der Elektronen zu kommen, muss man lediglich durch die Impedanz des Eingangs des Oszilloskops teilen. Auf diese Weise ergibt sich:

$$\frac{[\text{Spannung}] \cdot [\text{Zeit}]}{[\text{Widerstand}]} = [\text{Strom}] \cdot [\text{Zeit}] = [\text{Ladung}].$$
(13)

Erstellen der Histogramme und auffüllen des Trees

Alle bestimmten Parameter und Größen werden innerhalb eines Root-trees gespeichert. Das sind:

- Ladung und Anzahl der Elektronen, aus den Waveforms und den Fitkurven
- Maximale Spannung
- Anstiegs, Abklingzeit und Breite der Pulse

6. Auswertung der PMTs

Die Darstellung und Diskussion der Werte erfolgt ausführlich für eine Betriebsspannung des PMTs von 850 V. Für die anderen Betriebsspannungen ist die herangehensweise analog. Die entsprechenden Graphen zu den anderen Spannungen finden sich im Anhang. Die restlichen, mit dem Analyse-Programm errechneten Größen, sind jeweils tabellarisch aufgeführt.

6.1. Hamamatsu R9288

6.1.1. Anstiegs-, Abklingzeit, Pulsbreite und Verteilung des Maximalwerts

Um die Verteilung von Anstiegs-, Abklingzeit und Breite der Pulse auszuwerten, mussten Einträge bei denen die Ladung unter 0.2 pC gefallen sind abgeschnitten werden. Da der Alghoritmus nur wenn Pulse vorliegen diese Größen sinnvoll berechnen kann, ist es sinnvoll diesen Cut durchzuführen. Warum der Cut an dieser Stelle liegt wird später in der Ladungsverteilung noch klar werden.

Abbildung 15: Anstiegs- und Abfallzeit des PMTs Hamamatsu R9288 mit Gauss-Fit

Aus den Fits lassen sich alle Werte für die Anstiegszeit, (1.961 ± 0.228) ns, und für die Abklingzeit, (14.42 ± 2.54) ns ablesen.

Wie man sieht folgen die Histogramme keiner optimalen Gaussverteilung. Allerdings sollte man das zu große χ^2 nicht überbewerten, da es anzeigt, dass wir unseren Fehler zu klein abschätzen. Da beim Fitten jedoch eingestellt wurde, dass jeder Wert des Histogrammes gleichstark gewertet werden soll, da es sich um Messwerte mit immer gleicher Genauigkeit handelt, wurde jeder Fehler auf 1 gesetzt. Somit ist es klar, das unsere Fehler zu klein geschätzt werden (wenn das Histogramm keine optimale Gausskurve ist). Man sieht, dass der Graph der Abklingzeit leicht rechtsschief ist und dass die Anstiegszeit im Vergleich mit dem Fit eine Überhöhung aufweist. Bei der Aufnahme der Daten kam es manchmal zu starkem Rauschen. Dadurch kann es zu diesen Abweichungen zwischen Fit und Histogramm kommen. Zwei Beispiele für das Rauschen sind in der unten stehenden Abb. 16 gezeigt.

6. Auswertung der PMTs

Abbildung 16: Auffälliges Rauschverhalten

Die Ursache des Rauschens ist uns unbekannt. Um das hochfrequente Rauschen zu unterdrücken, wurde der im Kapitel 5 beschriebene Tiefpassfilter benutzt. Die niederfrequente Einhüllende bleibt dadurch immer noch erhalten, so dass sich unsere Pulse auf einer Art Welle befinden können.

Tritt dieses Rauschen auch während eines Pulses auf, so kann es sein das dieser zu breit gemessen wird, als er wirklich ist, da er auf einem Wellenberg ist. Dadurch kann es zu der Überhöhung und der leicht schiefen Gaussglocke kommen.

Eine andere Erklärung könnte sein, das es zu zwei Pulsen innerhalb des Zeitfenstes kam, die zusammengewachsen sind. So erhöht sich die Anstiegszeit um ein Stück. Dieser Fall ist allerdings nicht sehr wahrscheinlich, da wir bereits nur sehr wenige Ereignisse in allen unseren Waveforms haben, so dass die Wahrscheinlichkeit für zwei Single-Photon Pulse so nah bei einander sehr unwahrscheinlich ist.

Da die Breite der Pulse von der Anstiegs- und Abklingzeit maßgeblich abhängt ist es nicht verwunderlich, das bei dem Pulsbreite Diagramm beide Charakteristiken auftreten (Schiefe und Überhöhung).

Abbildung 17: Breite eines Pulses, PMT Hamamatsu R9288 mit Gauss-Fit

Die Breite der Pulse ist mit (33.20 ± 0.44) ns deutlich größer als nur die Summe aus Anstiegs- und Abklingzeit. Die Erklärung hierfür ist, dass einmal der Mittelteil zwischen diesen Größen fehlt da sie nur bis 90% ansteigen. Der größte Teil fehlt allerdings am Anfang und Ende des Pulses, da die Grenzen für die Breite 0.0001·Maxwert sind und nicht nur bis 10% abfallen.

In der Tabelle zusammengefasst ergeben sich für alle Betriebsspannungen die Werte zu:

Betriebsspannung	Anstiegszeit /ns	Abklingzeit /ns	Breite /ns
750V	2.068 ± 0.318	13.62 ± 2.21	33.52 ± 1.06
800V	2.018 ± 0.245	13.68 ± 2.15	33.34 ± 0.70
850V	1.961 ± 0.228	14.42 ± 2.54	33.20 ± 0.44
900V	1.898 ± 0.204	15.78 ± 2.58	33.18 ± 0.29

Tabelle 1: Anstiegs-, Abklingzeit und Pulsbreite, PMT R9288

Man sieht, dass die Anstiegszeit mit steigender Betriebsspannung kleiner wird und das die Abklingzeit ansteigt. Allerdings sind alle Werte innerhalb unserer Fehlerbetrachtung gleich. Damit lässt sich kein allgemeiner Zusammenhang zwischen Betriebspannung und Breite der Pulse vermuten.

Als letztes in diesem Kapitel wird nun noch der Maximalwert der Spannung der Waveforms betrachtet:

Abbildung 18: Maximalwert der Spannung in jeder Waveform, PMT Hamamatsu R9288

Wie man sieht, ist ein Tal zwischen den beiden Peaks. Der hohe Peak, ist die Verteilung des Maximalwerts der Spannung falls nur Rauschen vorliegt. Der lang gezogene Peak ist unser eigentliches Signal von den Pulsen. Um hier weitere Informationen zu bekommen, müssen die Daten gefittet werden. Dabei geht man wie folgt vor:

Als erstes wird das Rauschen mithilfe einer Gauss-Funktion gefittet. Dann wird aufgrund seiner asymmetischen Form ein Poisson-Fit an den Rest des Signals angelegt. Dann addiert man die beiden Fits auf und fittet noch einmal die kombinierte Kurve über den gesamten Bereich. Mithilfe dieser Fits kann man nun den mittleren Maximalwert der Spannung berechnen und das Verhältnis von Signal zu Rauschen bestimmen. Um das Verhältnis zu bestimmen wird die Fläche unter beiden Peaks einzeln berechnet und der Quotient gebildet. Um sicher zu sein, dass vor allem Single-Photon Peaks vorliegen sollte das Verhältnis wie in der Theorie schon erwähnt bei etwa 5% liegen.

Abbildung 19: Maximalwert der Spannung in jeder Waveform, PMT Hamamatsu R9288 gefittet

Man sieht hier in blau den Gauss-Fit für das Rauschen und in grün den Poisson-Fit. In Rot wurde das addierte und erneut gefittete Ergebnis aufgetragen. Die Abweichung zwischen Rauschen und Signal, die nicht so gut mit dem Histogramm übereinstimmt, kommt wahrscheinlich daher, dass beim Bedampfen der Kathode mit photosensitivem Material auch die Dynoden etwas davon abbekommen können. Dadurch kann es in den Verteilungen von Maximalwert der Spannung, Ladung und Anzahl Elektronen zu diesem e^{-ax} Abfall kommen. Dieser wurde hier jedoch nicht implementiert, weshalb der Graph an dem Tal ziwschen den Peaks das Histogramm zu klein fittet. Um nun den mittleren Maximalwert der Spannung auszurechnen, wurde einfach über den Poisson-Fit für x > 0 gemittelt.

In der Tabelle finden sich wieder die Daten für alle Betriebsspannungen. Lediglich bei 750V konnte kein Fit durchgeführt werden, da dort das Tal zwischen Rauschen und Signal nicht vorhanden war, und somit der Poisson-Fit keine Maximum finden konnte.

Betriebsspannung	Mittleres Spannungsmaximum /mV	Verhältnis Signal zu Rauschen
800V	1.305	0.0443:1
850V	2.352	0.0721:1
900V	4.000	0.0983:1

Tabelle 2: Maximalwert der Spannung und Verhältnis von Signal zu Rauschen, PMT R9288

Wie man sieht steigt der mittlere Maximalwert der Spannung stark an, was auch der Fall sein sollte. Das Verhältnis von Signal zu Rauschen ist bei den höheren Spannungen etwas zu hoch allerdings konnte diese wie in Kapitel 4 beschrieben bei der Datenaufnahme nur abgeschätzt werden. Da diese Rate zu hoch ist, könnte man vermuten, dass der Fit für größere Werte des Histogramms deshalb nicht gut passt, weil sich hier langsam der Zwei-Photon-Peak erhebt. Allerdings kann das nur gemutmaßt werden, da die Rate doch klein ist.

6.1.2. Verstärkung in Anzahl der Elektronen

Abbildung 20: Verstärkung in Ladung, PMT Hamamatsu R9288

In den oben stehenden Abbildungen ist die Verstärkung in Form von Ladung bei 850 V Betriebsspannung zu sehen. Da die Anzahl der Elektronen nur eine lineare Transformation der X-Achse erfordert, jedoch exakt das Gleiche aussagt, wird ab jetzt nur noch das Diagramm für die Anzahl der Elektronen diskutiert, da man dort den Verstärkungsfaktor direkt ablesen kann. Man sieht, dass sich bei dem Integral über die Waveforms ein ähnliches Bild wie bei dem Maximalwert der Spannung ergibt. Bei dem Integral über die Fitfunktion wird das Rauschen durch den Fit zu einer sehr schmalen Gauss-Kurve zusammen gedrückt. Dadurch ist der exponentielle Abfall, der von den aus den Dynoden ausgelästen Photoelektronen stammt, deutlicher zu sehen.

Die rote Linie in der Ladungsverteilung dient lediglich zur Veranschaulichung an welcher Stelle der Cut für die Anstiegs- und Abklingzeit durchgeführt wurde. Wie man sieht, befindet sich dieser genau im Tal zwischen Rauschen und Signal. Alle Einträge, die eine Ladung größer 0.2 pC besitzen, sind also Waveforms mit einem Puls.

Um nun die mittlere Anzahl der Elektronen bzw. die Ladung, oder die Verstärkung zu bekommen, wird genau wie bei der maximalen Spannung vorgegangen.

(a) Anzahl Elektronen, Fitfunktionen

(b) Anzahl Elektronen, Waveforms

Abbildung 21: Gefittete Kurven der Verstärkung in Anzahl der Elektronen, PMT Hamamatsu R9288

Hier sieht man nun die Ergebnisse der gefitteten Histogramme. Die Poissonfunktion ist auch hier gut geeignet. Nur für die größeren Werte fällt sie etwas zu schnell ab, das kann jedoch wie schon bei der maximalen Spannung daran liegen, dass hier das Zwei-Photon-Peak anfängt. Aus diesem Grund wurde in Tabelle **??** ein Wert *P* für die Wahrscheinlichkeit für etwas anderes als ein Single-

Photon Peak berechnet, anhand des tatsächlichen Verhältnisses von Signal zu Rauschen. Das Verhältnis sollte das gleiche sein, jedoch weicht es von dem vorher bei dem Maximalwert der Spanung berechneten ab. Bei der Anzahl der Elektronen der Waveforms (Abb. 21(a)) ist die Abweichung geringer als bei der Anzahl der Elektronen der Fitfunktionen (Abb. 21(b)). In der nachfolgenden Tabelle werden nun die Werte für alle Betriebsspannungen aufgetragen. Dabei konnten bei 750 V wieder keine Fits durchgeführt werden, da Signal und Rauschen zu stark ineinander übergehen. Auch bei 800V konnte das Histogramm über die Fitfunktionen nur schlecht gefittet werden aus diesem Grund ist dafür kein Wert für die Signal zu Rauschen Rate zu berechnen.

Betriebsspannung	Anzahl Elektronen /10 ⁶		Signal zu Rauschen Rate		P /%	
	Waveforms	Fitfunktion	Waveforms	Fitfunktion	Waveforms	Fitfunktion
800V	1.372	1.428	0.0679:1	-	0.22	-
850V	2.769	2.882	0.0853:1	0.0754:1	0.34	0.27
900V	5.146	5.231	0.1050:1	0.1033:1	0.51	0.50

Tabelle 3: Anzahl der Elektronen und Verhältnis von Signal zu Rauschen, PMT R9288

Für höhere Betriebsspannungen steigt die Anzahl der Elektronen erwartungsgemäß stark an. Das Verhältnis von Signal zu Rauschen ist generell etwas höher als vorher bei dem Maximalwert der Spanung berechneten Verhältnis. Man sieht, dass bei 900V schon eine 0.51% Chance vorliegt ein Ereignis zu bekommen das von mehr als einem Photon ausgelöst wurde. Das sind bei 160 000 Waveforms immerhin 816 Stück. Das könnten also genau die Ereignisse sein um die der Poisson-Fit zu klein ist. Um eine exaktere Beschreibung des obigen Graphen zu bekommen, hätte also noch ein weiterer Fit für Zwei-Photon Peaks implementiert werden können, was aufgrund Zeitmangels allerdings nicht gemacht wurde.

Wie schon in der Theorie beschrieben, sollte nun der Wert für die Verstärkung in einem doppeltlogharitmischen Plot, einen linearen Zusammenhang mit der Betriebsspannung geben:

Abbildung 22: Doppellogarithmischer Plot zur Überprüfung der Linearität, PMT Typ R9288

Man sieht, dass die Linearität sehr gut gegeben ist. Die Fitparameter für einen Fit der Form $y = A \cdot Bx$ sind in folgender Tabelle gegeben

	Blau	Rot
Parameter	Fit über Fitfunktionen	Fit über Waveforms
A	-32.453 ± 0.626	-32.275 ± 0.722
В	11.227 ± 0.214	11.172 ± 0.247

Tabelle 4: Fit Parameter für Verstärkungslinearität, PMT R9288

Es besteht auch nur ein geringer Unterschied zwischen der Verstärkung für die Fitfunktionen und der, der Waveforms, wie man an den sehr ähnlichen Variablen sehen kann. Innerhalb der Fehler stimmen die Kurven sogar überein.

Korrelation Spannung gegen Anzahl Elektronen

Wie in der Theorie berschrieben überprüft man nun ob die Ladung eines Pulses von der maximalen Spannung des Pulses abhängt, was der Fall sein sollte. Dafür trägt man die Anzahl der Elektronen gegen die Spannung auf und versieht das Ganze mit einer Häufigkeits-Farbskala um zu sehen ob sich ein ähnliches Bild wie bei dem Maximalwert

der Spannung und der Anzahl der Elektronen ergibt.

Abbildung 23: Anzahl Elektronen in Abhängigkeit des Maximalwerts der Spannung, PMT Typ R9288

Wie man sieht besteht zwischen den Größen ein linearer Zusammenhang. Um den Nullpunkt herum ist diese Linie etwas verbreitert, und besteht aus sehr vielen Ereignissen, was daran liegt, dass es sich um Rauschen handelt der um diesen Wert streut. Wie die negativen Werte der Spannung zustande kommen können wir nicht erklären, es müssen Messfehler sein, da es keine negativen Maximalwert der Spannung geben darf. Allerdings sind es auch nur sehr wenige Punkte die im negativen Bereich liegen.

6.1.3. Dunkelrate

Um die Dunkelrate zu messen, wurde am Oszilloskop auf Pulse getriggert. Da die Triggerschwelle höher sein musste als das Rauschen, verliert man so einige Pulse, da das Rauschen höher sein kann als ein Puls selbst und zählt auf der anderen Seite zu viele wenn ein stärkeres Rauschen eintritt. Die hier angegebene Dunkelrate dient lediglich einer groben Abschätzung der jeweiligen Dunkelrate bei verschiedenen Betriebsspannungen, und ob die Rate abhängig von der eingestellten Spannung ist. Es werden jeweils 6 Messungen gemacht und dabei die Zeit gezählt, die es dauert eine bestimmte Anzahl (200 bei 750 V, 512 bei 800 V und 8192 bei 850 und 900 V) an Pulsen aufzunehmen. Aus den so gemessenen Daten lassen sich Mittelwert und Abweichung berechnen.

Betriebspannung /V	Zählrate /Hz	relativer Fehler /%
750	1.475 ± 0.071	4.81
800	6.834 ± 1.198	17.53
850	35.656 ± 2.126	5.96
900	55.268 ± 2.193	3.97

Tabelle 5: Dunkelpulsrate, PMT R9288

Wie man sieht steigt die Dunkelrate stark an. Die relativen Fehler sind kleiner 6% mit Ausnahme des Wertes bei 800 V. Dort war die erste der 6 Messungen deutlich länger als die restlichen weshalb sich hier ein höherer Fehler ergibt. Insgesamt ist die Dunkelrate mit Werten im Bereich von 1 - 60 Hz sehr gering, was gut für die spätere Verwendung in der TPC ist.

6.2. Hamamatsu R6041-06

Da die Ergebnisse sehr ähnlich zu dem des anderen PMT sind, werden hier nur die Tabellen gezeigt. Die zugehörigen Histogramme befinden sich im Anhang.

6.2.1. Anstiegs-, Abklingzeit, Pulsbreite und Verteilung des Maximalwerts

Hier wurden die gleichen Einschränkungen gemacht wie bei dem PMT des Typs R9288. Das heißt Anstiegs-, Abklingzeit und Breite der Pulse wurden wieder nur aus Waveforms mit einer Ladung von mehr als 0.2 pC geplottet. Damit ergeben sich Anstiegs-, Abklingzeit und Breite zu:

Betriebsspannung	Anstiegszeit /ns	Abklingzeit /ns	Breite /ns
750V	2.249 ± 0.369	14.16 ± 2.16	33.96 ± 1.24
800V	2.229 ± 0.259	14.29 ± 1.93	33.73 ± 0.84
850V	2.132 ± 0.256	16.09 ± 2.23	33.56 ± 0.52
900V	1.997 ± 0.167	18.34 ± 1.13	33.39 ± 0.31

Tabelle 6: Anstiegs-, Abklingzeit und Pulsbreite, PMT 6041-06

Schaut man in die Graphen im Anhang, so sieht man ein ähnliches Verhalten wie bei der Anstiegs-, Abklingzeit und Breite des PMTs R9288. Auch bei diesen Messungen kam es zu dem vorher beschriebenen Rauschen, welches die Ursache für die Abweichung von reinen Gausspeaks sein könnte.

Wieder sind alle Zeiten innerhalb des Fehlers gleich, lediglich die Abklingzeit für 850 V und 900 V sind etwas erhöht. Bei 900 V sieht man dies schon an der Verteilung der Abklingzeit, welche sich deutlich von den andern unterscheidet (siehe Anhang).

Für den Maximalwert der Spannung wurde wieder der Fit durchgeführt.Auch hier funktioniert die Fitmethode gut, bis auf die beschriebene Problematik mit der abfallenden
6. Auswertung der PMTs

e-Funktion. Nur für 750 V ist kein Tal zwischen den Peaks zu sehen und somit ist kein Fit durchführbar. Deswegen fehlen die Werte für diese Spannung in nachfolgender Tabelle. Auffällig ist bei den zugehörigen Graphen, dass die Spannungsverteilung des Signalpeaks sehr breit ist.

Betriebsspannung	Mittleres Spannungsmaximum /mV	Verhältnis von Signal zu Rauschen
800V	1.838	0.0572:1
850V	3.293	0.0631:1
900V	6.751	0.0332:1

Tabelle 7: Maximalwert der Spannung und Verhältnis von Signal zu Rauschen, PMT R6041-06

Man sieht auch hier wie erwartet einen starken Anstieg des mittleren Maximalwerts der Spannung. Auch das Verhältnis von Signal zu Rauschen ist hier im richtigen Prozentbereich geblieben, so dass man mit hoher Wahrscheinlichkeit nur Single-Photon Pulse erwartet, bzw. der Anteil an anderen Ereignissen gering ist.

6.2.2. Verstärkung in Anzahl der Elektronen

Hier wird wieder die Anzahl der Elektronen (AdE) verwendet um die Verstärkung zu bestimmen. Die Poisson-Kurve fällt auch hier zu steil ab, wenn man sich die Graphen im Anhang anschaut. Auch der e-Abfall ist hier sehr gut zu sehen. Wieder konnten hier bei 750 V keine Fits durchgeführt werden. Zusätzlich konnte bei 800 V und 900 V für die AdE der Fitfunktionen (hNelecFit) kein Verhältnis von Signal zu Rauschen berechnet werden. Dort war der Gauss-Peak durch die Fitkurven so schmal, dass die Fläche darunter verschwindend gering war. Somit wurde die Signal zu Rauschen Rate sehr groß. Da dieses Ergebnis nicht physikalisch ist wurde es nicht weiter verwendet.

Betriebsspannung	Anzahl Ele	ektronen /10 ⁶	Signal zu Rauschen Rate		
	Waveforms	Fitfunktion	Waveforms	Fitfunktion	
800V	2.360	2.288	0.0625:1	-	
850V	4.923	4.901	0.0572:1	0.0595:1	
900V	9.023	9.352	0.0411:1	-	

Tabelle 8: Anzahl der Elektronen und Verhältnis von Signal zu Rauschen, PMT R6041-06

Man sieht wieder den erwarteten Anstieg der Verstärkung. Nun wird wieder ein doppelt logarithmischer Plot erstellt um die Linearität zu überprüfen.

Abbildung 24: Doppellogarithmischer Plot zur Überprüfung der Linearität, PMT Typ R6041-06

Auch hier kann man die Lineariät gut erkennen. Mit nur drei Werten ist dieser Plot allerdings nur eine Abschätzung, die einzelnen Werte können also etwas zu groß oder zu klein sein. Für eine genauere Aussage hätte man noch bei weiteren Spannungen zwischen den jetzt genannten messen müssen. Für die Parameter gilt:

	Blau	Rot
Parameter	Fit über Waveforms	Fit über Fitfunktionen
А	-32.698 ± 1.291	-34.355 ± 1.065
В	11.394 ± 0.441	11.960 ± 0.364

Tabelle 9: Dunkelpulsrate, PMT R6041-06

Man sieht anhand der Formeln, das die Kurven innerhalb der Fehlerbetrachtung nicht identisch sind, allerdings auch dass sie nicht den 3 fachen Fehler als Abstand haben, und somit auch nicht signifikant verschieden sind. Die Linearität an sich ist trotzdem gut zu sehen.

Korrelation Spannung gegen Anzahl Elektronen

Auch hier wurde nun die Spannung gegen die Anzahl der Elektronen aufgetragen. Es

ergibt sich:

Abbildung 25: Anzahl der Elektronen in Abhängigkeit der maximalen Spannung, PMT Typ R6041-06

Wieder ist ein klarer Zusammenhang zwischen den Werten zu sehen. Die Verdickung am Anfang des Rauschens ist gut zu sehen. Auch hier sind die negativen Fehler wieder Messfehler. Die Linie fällt deutlich schlanker aus als die des PMTs Typ R9288.

6.2.3. Dunkelrate

Auch hier wurde mit den gleichen Bedingungen wie bei dem PMT des Typs R9288 die Dunkelrate gemessen. Es ist hier jedoch zu beachten, dass aus Zeitgründen, der PMT nur für einige Stunden im Dunkeln sein konnte und nicht wie bei dem anderen mehrere Tage. Dadurch messen wir eine höhere Dunkelrate, als sie eigentlich ist. Somit können wir später nur einen bedingten Vergleich anstellen.

Betriebspannung /V	Zählrate /Hz	relativer Fehler /%
750	3.978 ± 0.300	7.54
800	13.093 ± 1.122	8.57
850	59.711 ± 11.295	18.92
900	345.059 ± 31.114	9.02

Tabelle 10: Dunkelpulsrate, PMT R6041-06

6.3. Vergleich zwischen den PMTs

Von der Geometrie und dem Aufbau sind die beiden PMTs baugleich. Der PMT R9288 ist ein altes Modell des R6041-06. Vergleicht man die Anstiegs- Abklingzeit und die Breite der Pulse miteinander, so fällt auf, dass diese nahezu gleich sind. Alle drei Werte liegen bei dem PMT des Typs R6041-06 etwas höher sind aber innerhalb unserer Fehlerbetrachtung gleich.

Für den Maximalwert der Spannung, ist der Unterschied schon erheblich größer. Bei 800 V sind die gemittelten Maximalwerte der Spannung noch etwa gleich groß, doch für die höheren Werte wird der Abstand zwischen dem PMT R9288 und R6041-06 immer größer.

Da schon gezeigt wurde, das die Spannung und die Verstärkung korreliert sind, verwundert es nicht, dass auch die Verstärkung des PMTs R6041-06 deutlich höher ausfällt. Da wir uns besonders für die Anstiegszeit den Maximalwert der Spannung und die Verstärkung interessieren, sind diese Werte noch einmal nebeneinander aufgetragen um sie besser vergleichen zu können.

Betriebsspannung /V	Anstieg	gszeit /ns	Mittlere Spannung /mV		
	PMT R9288	PMT R6041-06	PMT R9288	R6041-06	
750	2.068 ± 0.318	2.249 ± 0.369	-	-	
800	2.018 ± 0.246	2.229 ± 0.259	1.305	1.838	
850	1.961 ± 0.228	2.132 ± 0.256	2.352	3.293	
900	1.898 ± 0.204	1.997 ± 0.167	4.000	6.751	

Tabelle 11: Vergleich der Anstiegszeit und dem Maximalwert der Spannung zwischen den PMTs

Betriebsspannung /V	Verstärkung /10 ⁶					
	Way	veforms	Fitfu	nktionen		
	PMT R9288	PMT R6041-06	PMT R9288	PMT R6041-06		
800	1.372	2.360	1.428	2.288		
850	2.769	4.923	2.882	4.901		
900	5.146	9.023	5.231	9.352		

Tabelle 12: Vergleich der Verstärkung zwischen den PMTs

Auffällig im Vergleich ist, das die Verteilung der Signalpeaks bei dem Maximalwert der Spannung und Anzahl der Elektronen bei dem PMT des Typs R6041-06 deutlich breiter sind als bei dem PMT R9288. Nun vergleichen wir noch die beiden Fitkurven über die Fitfunktionen der Verstärkung miteinander:

Abbildung 26: Vergleich der Fits für die Verstärkung, PMT R6041-06 und PMT R9288

wie man sieht steigt die Kurve des PMTs R6041-06 ein bisschen stärker wenn auch nur minimal. Allerdings ist er deutlich höher als der andere Graph. Das sieht man auch schon an den berechnetetn Größen.

A	ls	letzi	tes	verg	leic.	hen	w1r	die	Dun	kelr	ate	:
---	----	-------	-----	------	-------	-----	-----	-----	-----	------	-----	---

Betriebspannung /V	Zählrate /Hz				
	PMT R9288	PMT R6041-06			
750	1.475 ± 0.071	3.978 ± 0.300			
800	6.834 ± 1.198	13.093 ± 1.122			
850	35.656 ± 2.126	59.711 ± 11.295			
900	55.268 ± 2.193	345.059 ± 31.114			

Tabelle 13: Vergleich der Dunkelpulsrate zwischen den PMTs

Man sieht, dass die Dunkelrate des PMT R6041-06 deutlich höher ist. Die Ursache liegt wie schon erwähnt daran das der PMT R6041-06 nur wenige Stunden in dem völlig abgedunkelten Kasten liegen konnte, währende der andere dort mehrere Tage lag. Somit ist ein Vergleich zwischen diesen nicht möglich.

7. Zusammenfassung und Ausblick: Anwendung in Flüssig-Xenon-TPC

Im Rahmen dieser Bachelorarbeit wurde ein Programm entwickelt, dass es erlaubt die Pulsform von "Single-Photon-Elektron-Pulsen" von PMTs zu charakterisieren. Die Funktionsweise dieses Programmes, wurde an zwei geometrisch identischen PMTs des Herstellers Hamamatsu (Typ: R6041-06 und R9288) demonstriert. Es konnten dabei keine signifikanten Unterschiede in der Pulsform zwischen den beiden PMTs festegestellt. Die Verstärkung allerdings ist bei dem neueren PMT (Typ: R6041-06) deutlich größer. Die neuen PMTs vom Typ R6041-06 wurden vom Hersteller auf eine Quanteneffizienz von > 30% getestet, weshalb sie zusammen mit der hohen Verstärkung und den ermittelten schnellen Anstiegs- (~ 2 ns) und Abfallzeiten ($\sim 14 - 16$ ns) des Signals für den geplanten Einsatz, welcher im folgenden Abschnitt beschrieben werden soll, zu bevorzugen sind.

Wie in der Einleitung erwähnt, soll auch in Mainz eine TPC gebaut werden. Diese ist im Vergleich zu anderen Detektoren sehr klein (50 mm im Durchmesser und 50 mm hoch). In der unten stehenden Abb. sehen wir den schematischen Aufbau dieser TPC.

Abbildung 27: Schemazeichnung der neuen TPC, In der Mitte aufgeschnitten

Man sieht, dass die PMTs oben und unten in dieser Kammer sitzen. Die Avalanche Photodioden sind in der Zeichnung oben nicht eingezeichnet. Zu erkennen sind jedoch die Aussparungen in denen sie positioniert werden sollen, um eine X/Y Positionrekonstruktion zu ermöglichen. Über die Gitter wird ein elektrisches Feld in der TPC angelegt. Das oberste Gitter der TPC soll nachher auf annähernd Erdpotential liegen. Um nun zu verhindern, dass Elektronen, die nach oben beschleunigt werden, in den PMT eintreten und einen Puls auslösen, muss die Kathode des PMTs auf negativer HV sein. Aus diesem Grund muss man diesen PMT mit negativer Hochspannung versorgen.

Auf dem unteren Gitter hingegen liegt negative HV an. Somit ist das elektrische Feld störungsfreier, wenn sich auch die Kathode des unteren PMTs auf negativer HV befindet, allerdings ist das noch nicht festgelegt.

Die TPC ist bis zwischen die oberen beiden Gitter mit flüssigem Xenon gefüllt. Der Rest der Avalanche Photodioden (APDs) und der obere PMT befinden sich somit in Xenon Gas. Das hat den Grund, dass wie schon erwähnt, bei einem Stoß im flüssigen Xenon, zwei Signale entstehen. Es entsteht das prompte Szintillationslicht (S1 Signal) und die Ionisation des Xenons. Die Ionisation kann nachgewiesen werden, indem man die Elektronen, aufgrund des angelegten elektrischen Driftfeldes, nach oben in die Gasphase extrahiert. Das dort entstehende Szintillationslicht is proportional zur Anzahl der Elektronen. Eines der Hauptziele der Mainzer TPC ist allerdings, die Untersuchung der Pulsform des primären Szintillationslichtes (S1 Signal) und die Abhängigkeit der Pulsform. Dieses Signal besteht aus zwei Anteilen. Das eine ist schnell ($\tau \sim 2$ ns) und das andere vergleichsweise langsam ($\tau \sim 27$ ns). Mit der Mainzer TPC will man nun das Verhältnis der beiden Signalteile zueinander und die Abhängigkeit der S1 Pulsform von der Rückstoßart (Kern oder Elektronenhülle), könnte in zukünftigen Dunkle Materie Experimenten zur Verbesserung der Untergrunddiskrimination eingesetzt werden.

A. Anhang

A.1. Graphen

Abbildung 28: Graphen für 750 V, PMT Hamamatsu R9288

Abbildung 29: Graphen für 800 V, PMT Hamamatsu R9288

(c) Maximale Spannung

Abbildung 30: Fitfunktionen für 800 V, PMT Hamamatsu R9288

Abbildung 31: Graphen für 900 V, PMT Hamamatsu R9288

(c) Maximale Spannung

Abbildung 32: Fitfunktionen für 900 V, PMT Hamamatsu R9288

Abbildung 33: Graphen für 750 V, PMT Hamamatsu 6041-06

Abbildung 34: Graphen für 800 V, PMT Hamamatsu 6041-06

(c) Maximale Spannung

Abbildung 35: Fitfunktionen für 800 V, PMT Hamamatsu 6041-06

Abbildung 36: Graphen für 850 V, PMT Hamamatsu 6041-06

(c) Maximale Spannung

Abbildung 37: Fitfunktionen für 850 V, PMT Hamamatsu 6041-06

Abbildung 38: Graphen für 900 V, PMT Hamamatsu 6041-06

(c) Maximale Spannung

Abbildung 39: Fitfunktionen für 900 V, PMT Hamamatsu 6041-06

A. Anhang

A.2. Datenblätter

52

53

		III LILN I		111	= : <u>R9288</u>	REV. I SI	<u> </u>		
	CUSTOMER	:	RICE	UNIVERSIT	Y			TY: <u>2</u> p	çs.
	Serial Number	(1) Cathode Luminoùs Sens. μ A/Im	(2) Anode Luminous Sens. A/1m	(3) Anode Dark Current nA	(4) Cathode Blue Sens. Index				
	TB0629 TB0637	32. 6 37. 4	89.5 35.2	0.34 0.15	4.82 5.02				
5									
15									
20									
25	NOTES								
	(1) (2) (2)	(4) Ligh (3) Over Volt	t source: all supply age distri	Tungsten voltage bution: i	filament : 800 V (Dy1 Dy2 2 1 1	lamp ope	rated at Dy11 D:	2856 K. y12 P	
		(3) The (4) Meas thic	bulb of th ured with kness).	ie tube is a Corning	s insulate g CS 5-58	ad from g blue fil	round po ter (hal	tential. f stock	

HAMAMATSU

Date: FEBRUARY 5, 2004

Approved by: H. Hekamoto

. • ; •

HAMAMATSU

CUSTOMER:HPD/UNI MAINZQUANTITY :1 pce.

DATE : December 22, 2011

FINAL TEST SHEET

PHOTOMULTIPLIER TUBE

TYPE: R6041-06 MOD

Approved by: H. Hekamato

HAMAMATSU

HAMAMATSU PHOTONICS K.K., Electron Tube Division 314-5, Shimokanzo, Iwata City, Shizuoka Pref., 438-0193, Japan, Telephone : (81)0539-62-5248, Fax : (81)0539-62-2205

Operating Instructions: Collimating Lenses

74-UV, 74-VIS Collimating Lenses

In order to obtain accurate data, the light entering the sample and the light collected after exiting the sample must be well collimated. The **74-UV** and **74-VIS COLLIMATING LENSES** screw onto the end of SMA-terminated optical fibers and other sampling optics to convert divergent beams of radiation (light) into a parallel beam.

Application Tips

- Using a collimating lens is easy. Screw a collimating lens onto the end of any SMA-terminated port to collect, shape, or focus light.
- Collimating lenses are useful for any optical setup that requires the acceptance or transmission of parallel beams of light at the illumination source, at the entrance optics, or at both ends (illumination and read) of the setup. That's important because the optical fibers Ocean Optics specifies for use with its spectrometers and light sources have a field of view (FOV) of ~25° -- an acceptance angle that may not be appropriate for some experiments. Collimating lenses are adjustable, providing FOV angles from collimation (near 0°) to ~45°. Without the collimating lenses, the light would disperse more than is required for efficient transmission and collection of the signal.

Specifications

Lens diameter:	5 mm
Lens length:	10 mm
f-number:	f/2
74-UV material:	Dynasil 1100 quartz (200 nm - 2 μm*)
74-VIS material:	BK 7 glass (360 nm - 2 μm*)
Lens barrel:	stainless steel with black oxide finish
Threads:	UNC 3/8-24

 * Though the product can be used to 2 $\mu\text{m},$ it can be configured to "see" only to 1100 nm with our S2000 spectrometer.

Adjusting the Focus for Collimating Lenses

In order to obtain accurate data, the light entering and exiting a sample by means of a fiber/collimating lens assembly must be well collimated. The following is a description of how to adjust the focus of light so that accurate data is collected by the spectrometer. (All collimating lenses are already adjusted at the time of manufacture such that light emerging from a 200 μ m fiber/collimating lens assembly is collimated.)

Adjust the focus of the collimating lens on your light source.

- Connect the fiber that you are going to use as the illumination fiber in your setup to the light source. Ensure
 the connection is tight. The female SMA connector of the fiber must be screwed all the way into the male
 connector of the lamp.
- Turn on the lamp and inspect the light beam emitted from the other end of the fiber by pointing the fiber at a light-colored object such as a white piece of paper. The distance is not too critical but should be at least 3 inches from the surface. Loosen the set screw on the fiber barrel of the light source with an Allen wrench.

- 1 -

Operating Instructions: Collimating Lenses

- 3. After the set screw has been loosened, slide the inner barrel of the collimating lens on the light source until you see an even intensity across the beam spot. The spot of light should be uniform; there should be no fluctuations in intensity and color. There should not be any dimmer rings of light surrounding the center spot.
- 4. Once the inner barrel is positioned so that a well-focused, uniform spot of light is obtained, tighten the set screw with the Allen wrench. Do not put down the fiber and then tighten the set screw. Try to continue to hold the fiber 3 inches from the surface while you tighten so that if the inner barrel of the collimating lens slips and distorts the spot of light, you will be able to readjust the focus. Now the collimating lens on the light source is focused for the fiber.

Adjust the focus of the next collimating lens in your setup.

- 5. For this part of the procedure, the illumination fiber is still connected to the lamp and its collimating lens and the lamp is still on. Now take the second collimating lens in your setup (removed from the illumination side of a cuvette holder, for example) and screw it onto the *other* end of the illumination fiber. Make sure the fiber and the second collimating lens are completely connected. Point this end of the fiber at least 2 meters away from a wall. If the beam spot on the wall is too faint, you may need to dim the room lights.
- 6. Loosen the set screw that holds the barrel of this second collimating lens in place and slide the barrel until the spot of light focused on the wall has crisp edges. You are looking for the sharpest and cleanest image possible. Tighten the set screw. Do not put the fiber down and then tighten the set screw. Try to continue to hold the fiber with the spot of light focused on the wall while you tighten the set screw so that if the inner barrel of the collimating lens slips and distorts the image while tightening, you will be able to readjust the focus. Now that the second collimating lens has been refocused, remove it from the end of the fiber and install it back into your setup (back into a cuvette holder, for example).

Continue to adjust the focus of the other collimating lenses in your setup.

7. You have completed adjusting the focus of the collimating lenses in the illumination part of your setup. Continue to adjust the focus of the other collimating lenses in your setup. If the read fiber is the same diameter size as the illumination fiber, repeat step 6 with each collimating lens in your setup. If the read fiber is a different diameter size than that of the illumination fiber, you need to remove the illumination fiber from the light source, connect the read fiber to the light source, and repeat step 6 for every collimating lens on the read part of your setup.

- 2 -

A.3. Programmcode

Programmteil I

#include <fstream>
#include <istream>
#include <istream>
#include <stdio.h>
#include <stdio.h> // for contains atoi() etc.
#include <string>
#include <string>
#include <string>
#include "TH1.h"
#include "TH1.h"
#include "TH2.h"
#include "TMatrixT.h"
#include "TH2.h"
#include "TH2.h"
#include "TH2.h"
#include "TH3.h"
#inclu using namespace std; int PulsFinder(){ nt PulsFinder(){
 // ### declarations ###
 TFile * rootFile = new TFile("PulsFinder.root", "RECREATE"); //new file for saving the edited data
 TFree * t =(TTree*)_file0->Get("tree"); //get the old tree from the current directory (raw-data,root)
 TTree * pulstree = new TTree("pulstree", "sorted waveforms");//new tree
 //Ttree * noisetree = new TTree("noistree", "noise waveforms");//new tree for the waveforms without a "right" pulse
 THIF * hMod = 0; //histogram for modified waveforms
 THIF * hmod = 0; //histogram with selected waveforms (minimum of waveform<three tree hew Ttree("noistere", "noisetree", "noisetree", "noisetree", "noisetree", "noisetree", "noisetree", "noisetree", "noisetree", "noisetree", "noisetree, "noisetree,", "noise waveforms");//new tree for the waveforms without a "right" pulse
 THIF * hmod = 0; //histogram with selected waveforms (minimum of waveform<three treestown)
 THIF * hmoise=0;
 THIF * hnoise=0;
 Ith darkcurrentcutbottom;//select when to start counting the pulses
 int darkcurrentcutbottom;//select when to start counting the pulses
 int darkcurrentcutbottom;//select when to start counting the pulses
 int darkcurrentcutbottom;//select until which bin number of point.qs for the calculation of the baseline
 double YdispRange, YdispOrg, Xinc; //to store the Header of raw-data.root
 int Npoints, inertry, minBin; //number of points in the raw-data.root, current entry of the tree, minimum bin in
 istogram h
</pre> istogram h
float baseline,baseline2; //baseline which is calculated
float baseline,baseline2; //baseline which is calculated
float mines, max, buffer, buffer2; //minimum in histogram h, variable for various purposes
float threshold =0.002; //threshold input
char cstr1[200]=""; //C-STR FOR VARIOUS PURPOSES
float extra=0.002; integral, integral2;
//limits of the band pass filter
//(limits of the band pass filter
//(limits themselves will be included into the accepted band)
int limitLow = 0;
int limitUp = 175; // to evaluate the frequency at which the cut is, do this: f=limitup/(Npoints*Xinc) histogram h // ### Set the addresses of the old branches to the new variables/branches ###
t->SetBranchAddress("Xinc",&Xinc);
//t->SetBranchAddress("YdispOrg",&YdispOrg);
//t->SetBranchAddress("Npoints",&Npoints);
t->SetBranchAddress("h",&h); t->GetEntry(1); //saves the first value of the tree to the variables // ### assignment of the previously defined pointers hMod = new THIF("hMod", ";Time / ns;Voltage / V",Npoints,0,double(Npoints)*Xinc*le9); hminBin = new THIF("hMinBin","Histogramm of the minimum bin in the Waveforms",Npoints,0,double(Npoints)); //noise= new THIF("hIntegral", ';Time / ns;Voltage / V",Npoints,0,double(Npoints)*Xinc*le9); hIntegral = new THIF("hIntegral", "Histogram of charge per noise waveform;Charge /pC", 1100,-3,10); hMod2 = new THIF("hIntegral2", "Histogram of charge per noise waveform;Charge /pC", 1100,-3,10); hIntegral2 = new THIF("hIntegral2", "Histogram of charge per noise waveform;Charge /pC", 1100,-3,10); // ### Define new Branches which will be stored in the new tree ###
pulstree->Branch("hMod","TH1F",&hMod,32000,0); //for the baseline corrected waveforms
pulstree->Branch("Xinc",&Xinc); //just stores the old branch from raw-data.root pulstree->Branch("Npoints,", Knpoints, "Npoints/I"); //just stores the old branch from raw-data.root pulstree->Branch("minBin,",minBin/I"); //branch for the bin where V is maximum/minimum pulstree->Branch("min",Kmin,"min/F"); // branch which stores the minimum value of V pulstree->Branch("max",Kmax,"max/F"); //franch which stores the maximum value of V (baseline corrected) pulstree->Branch("max",Kmax,"max/F"); //franch which stores the maximum value of V (baseline corrected) pulstree->Branch("baseline", baseline, "baseline/F"); //branch which stores the calculated baseline pulstree->Branch("darkcurrentcutbottom",&darkcurrentcutbottom,"darkcurrentcutbottom/I");//select until which bin number the pulse is counted as a real pulse pulstree->Branch("darkcurrentcuttory, &darkcurrentcuttop, "darkcurrentcuttop/I");//select when to start counting the pulses pulstree->Branch("integral" &integral "integral (""); nses pulstree->Branch("integral",&integral, "integral/F"); pulstree->Branch("integral2",&integral2, "integral2/F"); pulstree->Branch("hMod2","TH1F",&hMod2,32000,0); //for the baseline corrected waveforms cout<< "set timeframe:" <<endl <<"lower border:" <<endl <<"Enter Value between θ and " <<Npoints <<":"; clin>darkcurrentcuthettom; cout<< "upper border:" <<endl <<"enter Value between 0 and " <<Npoints <<":"; cout<<endl;</pre>

```
// ### loop over all entries of the tree ###
int Nentries=t->GetEntriesFast();
int counter=0;
int counter2=0;
for (ientry=0; ientry<Nentries; ientry++){
    t->GetEntry(ientry);
           if(ientry % 1000 ==0){cout << "Processing waveform: " << ientry << endl;}
           //FAST FOURIER TRANSFORMATION
           TH1::AddDirectory(kFALSE);
           //Compute the transform and look at the magnitude of the output
TH1 *hm =0;
TVirtualFFT::SetTransform(0);
//cout << "FFT 'MAGnitude'..." << endl;
hm = h->FFT(hm, "MAG");
hm->SetTitle("Magnitude");
//NOTE: for "real" frequencies you have to divide the x-axes range with the range of your function
           //Look at the phase of the output
TH1 *hp = 0;
//cout << "FFT 'PHase'..." << endl;
hp = h->FFT(hp, "PH");
hp->SetTitle("Phase");
           //Look at the DC component and the Nyquist harmonic:
Double_t re, im;
//That<sup>*</sup>s the way to get the current transform object:
TVirtualFFT *fft = TVirtualFFT::GetCurrentTransform();
           //Use the following method to get the full output:
Double_t *re_full = new Double_t[Npoints];
Double_t *im_full = new Double_t[Npoints];
fft->GetPointsComplex(re_full,im_full);
           //simple band pass filter
// imaginary part = magnitude * sin(phase)
// real part = magnitude * cos(phase)
//
// -> real and imaginary parts of unwanted frequencies have to be set zero
//
            //cout << "filtering..." << endl;</pre>
            for (int i = 0; i < limitLow; i++)</pre>
          '
re_full[i]=0;
im_full[i]=0;
}
           for (int i = limitUp + 1; i < Npoints; i++)
{</pre>
          '
'
re_full[i]=0;
im_full[i]=0;
}
           //Now let's make a backward transform:
TVirtualFFT *fft_back = TVirtualFFT::FFT(1, &Npoints, "C2R M K");
fft_back->SetPointsComplex(re_full,im_full);
// << "FFT back..-" << endl;
fft_back->Transform();
TH1 *hb = 0;
//Let's look at the output
hb = TH1::TransformHisto(fft_back,hb,"Re");
hb->SetTitle("The backward transform result");
hb->Scale(1/double(Npoints));
           delete fft;
delete fft_back;
delete [] re_full;
delete [] im_full;
//NORMAL PROGRAMM
min=0;
minBin=0;
for(int j=darkcurrentcutbottom;j<=darkcurrentcuttop;j++){
    buffer=hb->GetBinContent(j);
    if(buffer<min){
    min=buffer;
    minBin=j;}
}</pre>
```

}

```
min=hb->GetBinContent(minBin);
buffer=0;
baseline = 0.0;
baseline2=0.0;
for(int ibin=1; ibin=baselineLimit; ibin++) buffer += (hb->GetBinContent(ibin));
for(int ibin=1; ibin=baselineLimit; ibin++) buffer2 += (h->GetBinContent(ibin));
baseline2 = (buffer2 / baselineLimit);
hMod2->Reset();
for(int ibin=0; ibin=Npoints; ibin++){
    for(int ibin=0; ibin=Npoints; ibin++){
        buffer2 = baseline2 - (h->GetBinContent(ibin));
        buffer2 = baseline2 - (h->GetBinContent(ibin));
        hMod2->SetBinContent(ibin,buffer2);
        // hnoise->SetBinContent(ibin,buffer);
    }
max=hMod->GetBinContent(minBin);
    integral=Mod3->Integral(darkcurrentcutbottom,darkcurrentcuttop);
    hIntegral2->Fill(integral*Xinc/50*1e12);
    sprintf(cstrl, "WAVEFORM %i",counter);
    counter++;
    hMod2->SetTitle(cstrl);
    hMod2->SetTitle(cstrl);
    hminBin=0;
delete hb;
    delete hb;
    delete hp;
     delete hp;
    delete hp;
    delete hp;
    delete hp;
    delete hp;
    delete hp;
    delete hp;
    delete hp;
    delete hp;
    delete hp;
    delete hp;
    delete hp;
    delete hp;
    delete hp;
    delete hp;
    delete hp;
    delete hp;
    delete hp;
    delete hp;
    delete hp;
     delete hp;
     delete hp;
     delete hp;
     delete hp;
     delete hp;
     delete hp;
     delete hp;
     delete hp;
     delete hp;
     delete hp;
     delete hp;
     delete hp;
     delete hp;
     d
```

```
A. Anhang
```

Programmteil II

#include <fstream>
#include <iostream>
#include <stdio.h>
#include <stdlib.h> // for contains atoi() etc. #include <stdlib.h> // for contains atoi() etc. #include <string> #include <string> // for converting string into c-string #include <vectors> #include "TH1.h" #include "TH1.h" #include "TH1e.h" #include "TTriee.h" #include "TTree.h" #include "TTree.h" #include "TTere.h" #include "TBarch.h" #include "TBarch.h" using namespace std; int PulsAnalyzer(){
 // ### declarations ###
 TFile * rootFile = new TFile("PulsAnalyzer.root", "RECREATE"); //new file for saving the edited data
 Tree * t =(TTree*) file0-SGet("pulstree"); //get the old tree from the current directory (PulsFinder,root)
 Tree * analyzedtree = new TTree("tree", "analyzed waveforms");//new tree
 TF1 * wavefit2=0;
 TF1 * infunction=0;
 THIF * hight=0;
 int PulsAnalyzer(){ THLF * hNelecfull=0; THLF * hNelecfull=0; const int BinComp = 3; //Number of bins used to determine the left or right limit double elecCharge = 1.68217646e-19; const int baselineLimit(1000); //to set the number of point.gs for the calculation of the baseline double YdispRange, YdispOrg, XLn; //to store the Header of raw-data.root int Npoints, ientry, minBin; //number of points in the raw-data.root, current entry of the tree, minimum bin in histogram h float baseline; //baseline which is calculated float min-0, maxe /, minimum in histogram h, double buffer, buffer2; // variable for various purposes const float threshold = 0.0015; //threshold input char cstrl[200]=""; //c-STR FOR VARIOUS PURPOSES double ampl; //amplitude at the minim point int right.left, width, darkcurrentcuttop, darkcurrentcutbottom; //right,left limit for the peak integral, width of the integral, limits for darkcurrent double integral; //integral value for the peak double charge; //charge of one peak double charge; //charge of one peak double hele; //Number of electrons per pulse const double integralence= 50; //50 0hm resistance int integrationwidth; // stores the avarage width over all waveforms double chargestatic; //integral of ene peak (static width) double Melecstatic; //kumber of electrons per pulse (static width) double Melecstatic; //kumber of electrons per pulse (static width) double Melecstatic; //kumber of electrons per pulse (static width) double Melecstatic; //kumber of electrons per pulse (static width) double Melecstatic; //kumber of electrons per pulse (static width) double Melecstatic; //kumber of electrons per pulse (static width) double Melecstatic; //kumber of electrons per pulse (static width) double Melecstatic; //kumber of electrons per pulse (static width) double Melecstatic; //kumber of electrons per pulse (static width) double Melecstatic; //kumber of electrons per pulse (static width) double Melecstatic; //kumber of electrons per pulse (static width) double Melecstatic; //kumber of electrons per pulse (static w

double Nelecfult. chargefult; double films.ims.ims.if the old branches to the new variables/branches ### // ### Set the addresses of the old branches to the new variables/branches ### // SetTranchaddress(Thiot', &Kinci); t-SetTranchaddress(Thiot', &Kinci); t-SetTranchaddress(TabecLine", &Kaski); t-SetTranchaddress(TabecLine", &Kaski, &Kask

// ### Loop over all entries ###
int Nentries=t->GetEntriesFast();

buffer2=0;

for(ientry=0;ientry<Nentries;ientry++){ //this loop is for all the analysis, such as finding the width of each waveform and calculate the integral t->GetEntry(ientry);

if(ientry % 1000 ==0){cout << "pulstree" << endl;}
if(ientry % 100 ==0){cout << "Processing waveform: " << ientry << endl;}</pre>

for(int i=(int)minBin; i>0; i--){
 buffer=0;

for(int j=0;j<3;j++){buffer+=hMod->GetBinContent(i-j)/3; }
buffer2=buffer/max;
if(buffer2<=0.1 || i<=darkcurrentcutbottom-100){</pre>

```
trisestart=(i-1);
break;}
           integral=hMod->Integral(darkcurrentcutbottom,darkcurrentcuttop)*Xinc/impedance;
Nelecfull=integral/(elecCharge*1e6);
chargefull=integral*1e12;
           //### *Xinc*le9 is for the rescaled xaxis, because the fitfunctions use X-Values instead of bins ###
sprintf(cstrl,"[0]*(exp(-((x-%.1f - [3]))/[1])-exp(-((x-%.1f - [3]))/[2]))",
trisestart*Xinc*le0,trisestart*Xinc*le0);
wavefit= new TF1 ("wavefit",cstrl,0,Npoints*Xinc*le0);
wavefit=>SetParameter(1,40*Xinc*le0);
wavefit=>SetParameter(1,40*Xinc*le0);
wavefit=>SetParameter(2,25*Xinc*le0);
wavefit=>SetParameter(2,3*Xinc*le0);
if(integral<0){
wavefit=>SetParameter(0,0);
//
                11
trisestart=0;
          for(int i=0; i<1 ;i++){
    hMod->Fit("wavefit","Q","W",(trisestart)*Xinc*le9,Npoints*le9*Xinc);
    wavefit->SetParameter(0,wavefit->GetParameter(0));
    wavefit->SetParameter(1,wavefit->GetParameter(1));
    wavefit->SetParameter(2,wavefit->GetParameter(2));
    wavefit->SetParameter(3,wavefit->GetParameter(3));
    ''
           fitmaxl=wavefit->GetMaximum(0,Npoints*Xinc*le9);
if(fitmaxl-max>2*max)trisestart=minBin-200;
maxdistance=fitmaxl-max;
           wavefit3= new TF1 ("wavefit3",cstr1,0,Npoints*Xinc*1e9);
           wavefits= new irl ('wavefits',cstr1,0,NpDints*AlnC*1e9;)
wavefit3-SetParameter(0,wavefit-SetParameter(0));
wavefit3-SetParameter(1,wavefit-SetParameter(1));
wavefit3-SetParameter(2,wavefit-SetParameter(2));
wavefit3-SetParameter(3,wavefit-SetParameter(3));
hMod->Fit("wavefit3","Q","W",(trisestart)*Xinc*1e9,Npoints*1e9*Xinc);
           cl=wavefit3->GetParameter(0);
c2=wavefit3->GetParameter(1);
c3=wavefit3->GetParameter(2);
c4=wavefit3->GetParameter(3);
buffer=wavefit3->GetNDF();
if(buffer==0)buffer=1;
chi2=(wavefit3->GetChisquare())/(buffer);
sprintf(cstrl, "(%f)*(exp(-((x- %.lf - %f))/%f)-exp(-((x- %.lf - %f))/%f)
)",cl,trisestart*Xinc*le9,c4,c2,trisestart*Xinc*le9,c4,c3);
intfunction= new TF1 ("intfunction",cstrl,0,Npoints*Xinc*le9);
           double fitmax=intfunction->GetMaximum(darkcurrentcutbottom*Xinc*le9,darkcurrentcuttop*Xinc*le9);
int fitmaxbin=(int)(((intfunction->GetX(fitmax,darkcurrentcutbottom*Xinc*le9,darkcurrentcuttop*Xinc*le9))/Xinc/le9)
 +0.5):
           double fitmin;
           rightlimit=intfunction->GetMinimumX(minBin*Xinc*le9,(minBin+300)*Xinc*le9);
tfallstart2=intfunction->GetX(fitmax*0.9,minBin*Xinc*le9,darkcurrentcuttop*Xinc*le9);
tfallend2=intfunction->GetX(fitmax*0.1,minBin*Xinc*le9,darkcurrentcuttop*Xinc*le9);
leftlimit=intfunction->GetX(fitmax*0.001,(minBin*200)*Xinc*le9,minBin*Xinc*le9);
trisestart2=intfunction->GetX(fitmax*0.1,0,minBin*Xinc*le9);
triseend2=intfunction->GetX(fitmax*0.9,0,minBin*Xinc*le9);
           trise2=triseend2-trisestart2;
tfall2=tfallend2-tfallstart2;
           width2=rightlimit-leftlimit;
           //### calculation of the integral via fitted waveforms ###
integral=0;
          integral=intfunction->Integral(leftlimit,rightlimit)/le9/impedance;
ChargeFit=integral*le12;
NelecFit=integral/(elecCharge*le6);
           // ### calculation of the integral, charge and number of electrons per puls ###
```

```
integral = hMod->Integral((int)((leftlimit/Xinc/le9)+0.5),(int)((rightlimit/Xinc/le9)+0.5))*Xinc/impedance;
// in [C]
charge = integral*1e12; // in [pC]
Nelec = integral / (elecCharge * 1e6); // Number of 10^6 electrons
```

// ### fill all histograms ###

```
hNelecFit->Fill(NelecFit);
hChargeFit->Fill(ChargeFit);
hTrise2->Fill(trise2*Xinc*1e9);
hTfall2->Fill(trise2*Xinc*1e9);
hNelec->Fill(Nelec);
hCharge->Fill(charge);
hMaxVolt->Fill(ma*1000); //Voltage in mV
hwidth2->Fill(width2*Xinc*1e9);
hminBin->Fill(winBin);
hNelecfulL->Fill(NelecfulL);
hChargefulL->Fill(chargefulL);
analyzedtree->Fill();
```

delete wavefit; delete wavefit3; delete intfunction; delete hFit;

}

```
rootFile->Write();
```

return 0;}
B. Abbildungs- und Tabellenverzeichnis

Abbildungsverzeichnis

1.	Schematische Zeichnung eines PMTs	2
2.	Schaltplan eines typischen Spannungsteilers	8
3.	Schaltplan des von uns verwendeten Spannungsteilers	9
4.	PMT-Base(unbestückt)	10
5.	Foto der fertigen Base	11
6.	Schematischer Aufbau	12
7.	Fotos des Aufbaus	12
8.	Rechteckpuls des Pulsgenerators	13
9.	Oszilloskop Bildschirm mit einer Waveform, Triggerschwelle bei $-1,27 \text{ mV}$.	14
10.	Waveform	16
11.	Frequenzspektren	16
12.	Ladung der gefilterten Waveform gegen die ungefilterte bei 850 V	17
13.	Summe mehrerer Waveforms	18
14.	FitFunktion	19
15.	Anstiegs- und Abfallzeit des PMTs Hamamatsu R9288 mit Gauss-Fit	21
16.	Auffälliges Rauschverhalten	22
17.	Breite eines Pulses, PMT Hamamatsu R9288 mit Gauss-Fit	23
18.	Maximalwert der Spannung in jeder Waveform, PMT Hamamatsu R9288	24
19.	Maximalwert der Spannung in jeder Waveform, PMT Hamamatsu R9288 gefittet	25
20.	Verstärkung in Ladung, PMT Hamamatsu R9288	26
21.	Gefittete Kurven der Verstärkung in Anzahl der Elektronen, PMT Hamamatsu R9288	27
22.	Doppellogarithmischer Plot zur Überprüfung der Linearität, PMT Typ R9288	29
23.	Anzahl Elektronen in Abhängigkeit des Maximalwerts der Spannung, PMT Typ	
	R9288	30
24.	Doppellogarithmischer Plot zur Überprüfung der Linearität, PMT Typ R6041-06	33
25.	Anzahl der Elektronen in Abhängigkeit der maximalen Spannung, PMT Typ R6041-	
	06	34
26.	Vergleich der Eite für die Veretörkung DMT D6041 06 und DMT D0288	
27	vergieren der Fits für die Verstarkung, Fivit K0041-00 und Fivit K9288	36
21.	Schemazeichnung der neuen TPC, In der Mitte aufgeschnitten	36 37
27. 28.	Schemazeichnung der neuen TPC, In der Mitte aufgeschnitten	36 37 39
27. 28. 29.	Schemazeichnung der neuen TPC, In der Mitte aufgeschnitten	36 37 39 40
27. 28. 29. 30.	Schemazeichnung der neuen TPC, In der Mitte aufgeschnitten	36 37 39 40 41
 27. 28. 29. 30. 31. 	Schemazeichnung der neuen TPC, In der Mitte aufgeschnittenGraphen für 750 V, PMT Hamamatsu R9288Graphen für 800 V, PMT Hamamatsu R9288Fitfunktionen für 800 V, PMT Hamamatsu R9288Graphen für 900 V, PMT Hamamatsu R9288	36 37 39 40 41 42
 27. 28. 29. 30. 31. 32. 	Schemazeichnung der neuen TPC, In der Mitte aufgeschnittenGraphen für 750 V, PMT Hamamatsu R9288Graphen für 800 V, PMT Hamamatsu R9288Fitfunktionen für 800 V, PMT Hamamatsu R9288Graphen für 900 V, PMT Hamamatsu R9288Fitfunktionen für 900 V, PMT Hamamatsu R9288Fitfunktionen für 900 V, PMT Hamamatsu R9288	36 37 39 40 41 42 43
 27. 28. 29. 30. 31. 32. 33. 	Schemazeichnung der neuen TPC, In der Mitte aufgeschnittenGraphen für 750 V, PMT Hamamatsu R9288Graphen für 800 V, PMT Hamamatsu R9288Fitfunktionen für 800 V, PMT Hamamatsu R9288Graphen für 900 V, PMT Hamamatsu R9288Graphen für 900 V, PMT Hamamatsu R9288Graphen für 900 V, PMT Hamamatsu R9288Graphen für 750 V, PMT Hamamatsu R9288Graphen für 900 V, PMT Hamamatsu R9288Graphen für 750 V, PMT Hamamatsu 6041-06	36 37 39 40 41 42 43 44
 27. 28. 29. 30. 31. 32. 33. 34. 	Schemazeichnung der neuen TPC, In der Mitt R0041-00 und FMT R9288Graphen für 750 V, PMT Hamamatsu R9288Graphen für 800 V, PMT Hamamatsu R9288Fitfunktionen für 800 V, PMT Hamamatsu R9288Graphen für 900 V, PMT Hamamatsu R9288Graphen für 800 V, PMT Hamamatsu R9288Graphen für 900 V, PMT Hamamatsu 6041-06Graphen für 800 V, PMT Hamamatsu 6041-06	 36 37 39 40 41 42 43 44 45
 27. 28. 29. 30. 31. 32. 33. 34. 35. 	Vergleren der Pits für die Verstarkung, Pivit Roo41-00 und Pivit R9288Schemazeichnung der neuen TPC, In der Mitte aufgeschnittenGraphen für 750 V, PMT Hamamatsu R9288Graphen für 800 V, PMT Hamamatsu R9288Fitfunktionen für 800 V, PMT Hamamatsu R9288Graphen für 900 V, PMT Hamamatsu R9288Graphen für 750 V, PMT Hamamatsu 6041-06Graphen für 800 V, PMT Hamamatsu 6041-06Fitfunktionen für 800 V, PMT Hamamatsu 6041-06	36 37 39 40 41 42 43 44 45 46
 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 	Vergreten der Prits für die Verstarkung, PMT Roo41-00 und PMT R9288Schemazeichnung der neuen TPC, In der Mitte aufgeschnittenGraphen für 750 V, PMT Hamamatsu R9288Graphen für 800 V, PMT Hamamatsu R9288Fitfunktionen für 800 V, PMT Hamamatsu R9288Graphen für 900 V, PMT Hamamatsu R9288Fitfunktionen für 900 V, PMT Hamamatsu R9288Graphen für 750 V, PMT Hamamatsu 6041-06Graphen für 800 V, PMT Hamamatsu 6041-06Graphen für 800 V, PMT Hamamatsu 6041-06Graphen für 800 V, PMT Hamamatsu 6041-06	36 37 39 40 41 42 43 44 45 46 47
 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 	Vergreten der Prits für die Verstarkung, PMT Roo41-00 und PMT R9288Schemazeichnung der neuen TPC, In der Mitte aufgeschnittenGraphen für 750 V, PMT Hamamatsu R9288Graphen für 800 V, PMT Hamamatsu R9288Fitfunktionen für 800 V, PMT Hamamatsu R9288Graphen für 900 V, PMT Hamamatsu 6041-06Graphen für 800 V, PMT Hamamatsu 6041-06Graphen für 800 V, PMT Hamamatsu 6041-06Fitfunktionen für 800 V, PMT Hamamatsu 6041-06Fitfunktionen für 850 V, PMT Hamamatsu 6041-06Fitfunktionen für 850 V, PMT Hamamatsu 6041-06	36 37 39 40 41 42 43 44 45 46 47 48
 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 	Vergreten der Prits fun die Verstarkung, PMT Roo41-00 und PMT R9288Schemazeichnung der neuen TPC, In der Mitte aufgeschnittenGraphen für 750 V, PMT Hamamatsu R9288Graphen für 800 V, PMT Hamamatsu R9288Fitfunktionen für 800 V, PMT Hamamatsu R9288Graphen für 900 V, PMT Hamamatsu R9288Graphen für 750 V, PMT Hamamatsu 6041-06Graphen für 800 V, PMT Hamamatsu 6041-06Graphen für 800 V, PMT Hamamatsu 6041-06Fitfunktionen für 800 V, PMT Hamamatsu 6041-06Graphen für 850 V, PMT Hamamatsu 6041-06Graphen für 850 V, PMT Hamamatsu 6041-06Graphen für 900 V, PMT Hamamatsu 6041-06	36 37 39 40 41 42 43 44 45 46 47 48 49

Tabellenverzeichnis

1.	Anstiegs-, Abklingzeit und Pulsbreite, PMT R9288	23
2.	Maximalwert der Spannung und Verhältnis von Signal zu Rauschen, PMT R9288	25
3.	Anzahl der Elektronen und Verhältnis von Signal zu Rauschen, PMT R9288	28
4.	Fit Parameter für Verstärkungslinearität, PMT R9288	29
5.	Dunkelpulsrate, PMT R9288	31
6.	Anstiegs-, Abklingzeit und Pulsbreite, PMT 6041-06	31
7.	Maximalwert der Spannung und Verhältnis von Signal zu Rauschen, PMT R6041-06	32
8.	Anzahl der Elektronen und Verhältnis von Signal zu Rauschen, PMT R6041-06 .	32
9.	Dunkelpulsrate, PMT R6041-06	33
10.	Dunkelpulsrate, PMT R6041-06	34
11.	Vergleich der Anstiegszeit und dem Maximalwert der Spannung zwischen den PMTs	35
12.	Vergleich der Verstärkung zwischen den PMTs	35
13.	Vergleich der Dunkelpulsrate zwischen den PMTs	36

C. Quellen

Literatur

- [1] Glenn F. Knoll, "Radiation Detection and Measurement"; John Wiley & Sons (2000) 816 p.
- [2] W.R. Leo "Techniques for Nuclear and Particle Physics Experiments, A How-to Approach"; Springer-Verlag (1994) 279 p.
- [3] XENON100 Collaboration "The XENON100 Dark Matter Experiment" http://arxiv.org/abs/1107.2155
- [4] E. April and T. Doke "Liquid xenon detectors for particle physics and astrophysics" Rev. Mod. Phys. 82, 2053-2097 (2010).
- [5] Hamamatsu Photonics K.K. "Photomultiplier Tubes, Basics and Applications" http://sales.hamamatsu.com/assets/applications/ETD/pmthandbookcomplete.pdf
- [6] Wiki des F-Praktikums der Uni Mainz; https://www-fp.physik.uni-mainz.de/index.php