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Introduction
Today we know that the universe is not that empty as believed earlier. But also only a
small amount of the whole energy of the universe is made out of matter directly visible to
us. The actual “standard model” of big bang cosmology is called Λ-Cold Dark Matter
(ΛCDM)-Model, where Λ represents the cosmological constant. In this model our
universe consists of 31.7% matter and 68.3% Dark Energy [1] (see section 1.1.3 for more
details). The question what Dark Energy is stays a mystery and cannot be answered
yet. Though its existence is needed to explain the observed accelerated expansion of the
universe. Matter we can observe and interact with, is explained in the Standard Model
of Particle Physics. Only about 4.9%of the whole energy is made out of luminous and
visible baryonic matter. The remaining amount (26.8%) is of a yet not known kind, not
directly visible to us and also seems to not interact with normal baryonic matter [1]. In
the 1930 s, during his velocity observations of the Coma Cluster of galaxies, Fritz Zwicky
[35] [36] was the first one who called it “dark” because of its non-luminous character
and gave it its name: Dark Matter (DM). The Standard Model of Particle Physics
provides no particles to explain the astronomical observations, so new and not yet
known particles have to be found and the door to physics beyond the Standard Model
is opened. The most promising particles, which arise from Supersymmetry (SUSY), an
expansion to the Standard Model, are Weakly Interacting Massive Particles (WIMPs)
(see section 1.1.4) wich are the Lightest Supersymmetric Particles (LSPs).

This work aims to introduce a new, alternative approach to analyze the data provided
by the XENON100 Dark Matter project. To accomplish this, the need to understand
the calculations behind the elastic scattering of WIMPs of a target nucleus is essential,
the basics will be discussed in section 1.3. A C++ program was developed to calculate
the differential energy rates that also includes the XENON100 specific parameters and
detector responses. The response of the XENON100 detector, a two phase Time Pro-
jection Chamber (TPC), and its Photomultiplier Tubes (PMTs) is studied in detail,
see section 2.2 and section 4 where a simulation is done to estimate the average single
photoelectron response width of the PMTs. Earlier analysis were done with the profile
likelihood method, which uses a frequentist interpretation of probability. In this work
Bayesian inference will be used to calculate Confidence Limits (CLs) for the cross-
section of WIMP-nucleus interactions. In the Bayesian interpretation, probability is
a “degree of believe” and together with Bayes’ theorem a consistent way is provided
to update these believes by calculating the posterior probability density function, see
section 3.2. For the Bayesian analysis the Bayesian Analysis Toolkit (BAT), which is
explained in section 3.3, is used. This software package provides the needed abilities,
through Markov Chain Monte Carlo (MCMC) calculations, to obtain the posterior
probability density function where numerical integration is needed.
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1 Dark Matter
This chapter gives a motivation for introducing DM. With the help of astronomical
observations the need of a new kind of matter is shown.

1.1 Evidence for Dark Matter

1.1.1 Rotational curves of spiral galaxies

Since the early 1930’s many observations have shown that the velocities of stars in
the outer parts of spiral galaxies are too high. With the given speed the stars would
not remain on their orbits because the gravitational attraction is not strong enough to
hold them in their paths around the galactic center (e.g. [30]). As an example, Fig. 1.1
shows data taken for galaxy NGC 6503.

Figure 1.1.: The discrepancy between data and different models for the velocity distribution of stars
in spiral galaxies is shown. The disk only-model (dashed line) does not fit the observed data (solid
line with data points) [10].

First thing to notice is the huge discrepancy between the data points and the given
model assuming a disk-only distribution of matter (with a spherical galactic bulge for
r < 4 kpc). Newtonian dynamics predict a curve with decreasing velocity for increasing
distance:

v ∝ 1√
r
. (1.1)
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Dark Matter

Even if the non-luminous gas (dotted line in 1.1), which makes up about 80% of
the galaxy’s mass is taken into account, the observed roughly constant speed for an
increasing radius can not be explained. If we assume Newtons gravitational law to apply
even in these distances (alternative approach in section 1.2.1), a not yet discovered form
of massive particles have to be present to hold the galaxy together and prevent it from
being torn apart.

After introducing DM (dot-dashed line in Fig. 1.1) in form of a halo, the observed ve-
locity distribution can be explained. A halo describes a spherical isotropic distribution
of DM with its center in the nucleus of the galaxy.

1.1.2 Galaxy Clusters and Gravitational Lensing

As mentioned in the introduction, Fritz Zwicky was the first one to call the miss-
ing matter “dark” [35]. During his observations of the velocities of Galaxies in the
Coma-Galaxy cluster, he discovered a discrepancy in the mass that was calculated
through the luminosity of the galaxies and the mass calculated with the virial theorem
Ēkin = −1

2Ēpot. The calculation with the virial theorem yielded a factor of 400 more
mass. Later this factor was corrected to a smaller value with new measurements of the
Hubble constant and by including the mass of the gas and dust (which makes up to
80% of the mass of a galaxy) from the observations in different spectral ranges. This
gas could not be bound to the galaxy with only the gravitational force from the stars.
Even with this changes there was sill a lot of mass missing [36].

Another hint for DM can be found in the observation of two colliding galaxy clusters.
A well-known example is the Bullet Cluster (see Fig. 1.2). Since there is a lot of space
between the galaxies in the two clusters, the galaxies can pass each other without a
collision. On the other hand, the intergalactic gas that is bound between the galaxies
by gravitation, does collide and interacts with each other. As the gas of the galaxies
collides, it heats up and emits X-radiation. This is indicated red in Fig. 1.2 while the
mass distribution of the colliding galaxy clusters is colored blue. After the collision, the
center of mass and the interstellar gas of the galaxies are found in different places. While
the visible part (mostly gas) did collide, the center of mass is left almost untouched.
This indicates a form of dark (not visible) matter in the clusters that does not interact
as readily as the visible matter part.

Gravitational lensing is e.g. used to estimate the Bullet Cluster´s center of mass.
Analogously to geometrical optics where light is bent at the transition of two media,
light is bent in the presence of high masses (high gravitational potential) which is
called gravitational lensing. Fig. 1.3 shows an illustration and Fig. 1.4 the observed
effect. With the help of this effect the mass of massive astrophysical objects can be
calculated.
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Evidence for Dark Matter

Figure 1.2.: The collision of two galaxy clusters formed the Bullet Cluster. The center of mass
(blue) is left untouched, the gas collides and is heated up in this process (red) and forms the bullet
cone shaped structure (on the middle right side) which is characteristic for this cluster [15].

Figure 1.3.: Light is bent around massive objects analogously to refraction in optics (image courtesy
of NASA).

1.1.3 Cosmic Microwave Background

In 1964 Arno Penzias and Robert Wilson discovered the Cosmic Microwave Background
(CMB) [27]. As they were looking for radiation sources with their radio-telescope
they observed some noisy background. This microwave radiation that corresponds
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Figure 1.4.: Image of galaxy cluster Cl 0024+17 made by the Hubble space telescope. Faint far
away galaxies (blue) have their light bent by the cluster’s gravitational potential (yellow) (image
courtesy of NASA & ESA).

to approximately 2.7K came from every direction they were looking at. The CMB
consists of photons that were emitted 380.000 years after the Big Bang. At this stage
during the cooling-down of the early universe the photons no longer had enough energy
to ionize hydrogen or helium, so the universe became transparent to those photons.
Later CMB measurements with high precision by COBE, WMAP or just recently the
Planck satellite revealed very small fluctuations in the highly uniform temperature
(see Fig. 1.5). These fluctuations are in the order of 10−5 K and give us a picture of
density fluctuations in the early universe. After decomposition into spherical harmonics
a spatially correlation shows up (Fig. 1.6 ). Several peaks appear after plotting the
temperature and polarization power spectrum. The ratio between these peaks can be
used to estimate the composition of our universe. The CMB provides information about
the densities of normal (baryonic) matter, Dark Matter and total energy density [1].

The best fitting theory for the obtained parameters is the ΛCDM-model, which is
established as the standard model of Big Bang cosmology. In March 2013 the best fit
of the new Planck power spectrum corrected the composition of the universe in the
favor of even more DM. The baryonic part was nearly unchanged, as shown in Fig. 1.7.
Only 4.9 % of the universe consists of baryonic matter, the main part (68.3 %) is Dark
Energy of which almost nothing is known. About 26.8 % has to be “cold” Dark Matter
of which no interaction with normal baryonic matter has been observed this far. It is
called cold because the DM has to be non-relativistic, the kinetic energy of the particles
should be low and thus also their speed (vDM << c). Otherwise the structure of the
universe would be different as observed today.
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Figure 1.5.: Fluctuations in the temperature for the CMB from the recently published Planck
satellite data [1]. The different colors correspond to temperature differences in the order of 10−5 K.

Figure 1.6.: Temperature and polarization power spectrum obtained from the Planck satellite.
Points represent data, the red line corresponds to the best fit for the ΛCDM model [2].

Figure 1.7.: Comparison of the composition of the Universe for 9 years of WMAP data [21] and
the new Planck results [1].

7



Dark Matter

1.1.4 Weakly Interacting Massive Particle

Even with all evidences observed so far, the nature of DM is still unknown. If DM
would interact over the strong or electromagnetic force, it already should have been
discovered. Electromagnetic interaction would cause photons to be scattered and/or
absorbed by DM and therefore it should be visible to us to some extend. The strong
force only affects baryonic matter and the primordial nucleosynthesis tells us what
fraction of baryonic matter should be present compared to the whole energy of the
universe [28]. It agrees very well with the results coming from the measurements of
the CMB (see section 1.1.3). According to the ΛCDM model the fraction of matter
should be about 30% of the whole energy, so most of the matter has to be non-baryonic
matter that cannot interact through the strong force exchanging gluons. Apart from
gravitation there is only the weak force left to interact with DM.

No particle in the standard model of particle physics provides the needed characteristics
of only interacting through the weak force and being massive (otherwise they should
have already been detected in a collider experiment). Supersymmetry (SUSY) is a
possible expansion to the Standard Model of Particle Physics that contains the needed
particles. In SUSY every particle has its supersymmetric partner (every fermion gets
a supersymmetric bosonic partner and vice versa). The partner can also have a dif-
ferent mass compared to the Standard Model particle (broken symmetry). The most
promising candidate is the Weakly Interacting Massive Particle, which is the LSP.

If a SUSY particle cannot decay in normal particles there should be a stable LSP. There
is still the problem, that if DM interacts weakly over the neutral current (exchanging
a Z0-boson), it also should have already been detected. If WIMPs are SUSY particles,
the exchanging particles would also be supersymmetric particles. This would yield the
expected small cross-section for the interaction of DM with normal baryonic matter
[34].

1.2 Alternative Models

There are theories that do not introduce WIMP DM to solve the observed astrophysical
discrepancies between theory and measured data. Only a few will be discussed here.

1.2.1 Modified Newtonian Dynamics (MOND)

In MOdified Newtonian Dynamics (MOND), no new kind of matter is introduced.
Instead the gravitational law is modified. At first nobody wanted to believe in the
existence of new particles, this rather abstract thought was rejected instead for astro-
nomical distances a modification of the Newtonian dynamics was preferred. A new
scale factor was introduced to Newtonian dynamics which modifies the gravitational
force at long distances [26].

The rotation curves of spiral galaxies could be described with MOND and there would
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be no need for DM. But even in this theory DM is necessary to describe the behavior
of whole galaxy clusters. There are still theories like the TeVeS theory (Tensor-Vector-
Scalar [9]), the relativistic extension of MOND, which aims to explain astrophysical
observations without DM.

1.2.2 Massive Astrophysical Compact Halo Objects (MACHOs)

To avoid the introduction of DM there was also a search for not yet discovered non-
luminous baryonic matter. Brown Dwarfs for example are small “light” stars which,
due to their small masses, are not able to start fusion processes and therefore are
dark. Other non-luminous objects are gas giants, like Jupiter. These objects are called
Massive Astrophysical Compact Halo Objects (MACHOs). If there would be a high
amount of these objects the missing mass could be explained. Even after an extensive
search, the number of discovered MACHOs is not nearly high enough. In 2007 the
EROS-2 project published results, where less then 8% of the DM halo mass could
be due to MACHOs [31]. Undiscovered MACHOs, like black holes, could provide the
necessary mass to explain observed phenomena (velocities of spiral galaxies or the
Bullet Cluster). But this is rather unexpected [32], especially as such objects consist
of baryonic matter, which contradicts CMB results.

1.3 Direct Detection

With all the evidence shown before, we can assume that our planet moves through
a halo of DM, so direct detection should be possible. There are different Models
describing the distribution of DM in our galaxy. This work will focus on the “simple”
Standard Halo Model (SHM) where it is assumed that we have an isotropic and spherical
density distribution of DM in the Milky Way which is only dependent on the distance
to the galactic center. As the galaxy is rotating, normal matter and dark matter is
interpenetrating the whole time. Because of the very small cross-section the interaction
rate is expected to be very low.

WIMPs are supposed to interact with normal matter by depositing a small amount of
energy as they scatter elastically on target nuclei. To measure such small energies a
detector with a very low background is needed. A lot of things like detector location,
shielding and discrimination techniques have to be considered. Because of natural
radioactivity and produced radiation, only very pure materials can be used and thus a
lot of effort is put into selecting them.

The following sections will give an overview in how to calculate these rates (see [24] for
reference if not mentioned different).
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1.3.1 Standard Halo Model

Considering an isotropic and spherical density distribution of DM and the radial dis-
tance of our solar system in the galaxy, the local DM density is assumed to be

ρD ≈ 0.3 GeV
c2 · cm3 (1.2)

on and around earth [12]. For sure DM will not be stationary. To counter gravity and
provide an equilibrium state it has to be in motion and will have a velocity distribution
itself. A simple Maxwellian velocity distribution

f(~v,~ve) = exp
[
−(~v − ~ve)2

v2
0

]
(1.3)

is assumed for this model where ~v is the WIMP velocity relative to the target and ~ve is
the velocity of earth (~v represents the 3-dimensional velocity vector) and v0 = 230 km/s
is the normalization velocity. For the particle to be still bound in the gravitational
potential of the galaxy the velocity is constrained. Above the escape velocity vesc =
544 km

s particles are no longer bound and escape the galaxy. Because in the SHM the
halo does not rotate, the mean of all velocities of the DM particles has to be zero. It
should be noted that earth’s velocity is not a constant because the earth moves around
the sun while the sun moves around the galactic center. This annual modulation will
not be considered in this work.

1.3.2 Scatter Rates and Spectra

To measure the rate of events R, a detector has to measure the recoil energy Er that
is deposited after an interaction. The outcome of the measurement therefore is the
differential energy spectrum dR

dEr . In general the recoil spectrum can be expressed as

dR
dEr

= R0 · S(Er) · F 2(Er) · I, (1.4)

where R0, see (1.11), is the unmodified rate if earth was stationary in the DM halo.
S(Er) represents an energy-dependent factor which includes velocity effects, the detec-
tor thresholds or other instrumental dependencies. Since the interaction occurs with
the target nucleus also the form factor F (Er) is needed. The spin of the interacting
particles is considered with an additional factor I for spin dependent searches, which
is not the case in this work.

1.3.3 Particle density and velocity distribution

The scatter rate for particles with density number n and uniform velocity v can be
described by

R = σnv (1.5)
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with the cross-section σ [25]. For a velocity distribution f(~v) of the incoming particles
a differential scatter rate can be obtained with respect to d~v:

dR = σnv · f(~v)d3v = σ · vdn, (1.6)

where dn is the differential particle density

dn = n0
k
f(~v)d3v. (1.7)

Here n0 = ρ/MD is the local DM particle density for a WIMP of mass MD in the
laboratory frame and

k =
2π∫
0

dΦ ·
1∫
−1

d cos Θ ·
vesc∫
0

f(~v)v2dv (1.8)

is a normalization factor such that
vesc∫
0

dn = n0. (1.9)

For a Maxwellian velocity distribution in the halo (see (1.3)) and a truncated velocity
at v = vesc, k can be written as

k = k0

[
erf
(
vesc
v0

)
− 2 · vesc√

π · v0
· exp

(
−v2

esc

v2
0

)]
, (1.10)

with k = k0 = (πv2
0)2/3 for vesc 7→ ∞. For earth velocity ve = 0 and vesc 7→ ∞ the total

scatter rate is

R0 =
∞∫

v=0

σ · vdn = 2√
π
n0σv0. (1.11)

For other velocities, ve 6= 0, (1.6) yields

R = R0

√
π

2
k0
k

1
2πv4

0

∫
vf(~v)d3v. (1.12)

After integration of (1.12) in different ranges of the velocities - only WIMPs with a
velocity of ve < v < vesc can be detected in a target on earth - we get R with respect
to ve and vesc:

R(0, vesc)
R0

=k0
k

[
1−

(
1 + v2

esc

v2
0

)
exp

(
−v2

esc

v2
0

)]
,

R(ve,∞)
R0

=1
2

[
√
π

(
ve
v0

+ 1
2
v2
e

v2
0

)
erf
(
ve
v0

)
+ exp

(
−v2

e

v2
0

)]
,

R(ve, vesc)
R0

=k0
k

[
R(ve,∞)

R0
−
(
v2
esc

v2
0

+ 1
3
v2
e

v2
0

+ 1
)
exp

(
−v2

esc

v2
0

)]
, (1.13)
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where erf is the error-function. The differential recoil energy rate can now be expressed
in dependence of the recoil energy Er:

dR
dEr

=
Emax∫
Emin

1
Er

dR(E) = 1
E0 · r

vmax∫
vmin

v2
0
v2dR(v) (1.14)

with the kinematic factor
r = 4MDMT

(MD +MT )2 (1.15)

where MT is the mass of the target nucleus. The minimal DM particle velocity vmin
corresponds to Emin = Er/r and E0 = 1

2MDv
2
0. With this, Emin is the smallest energy

to give a recoil energy Er. Together with (1.6) we finally get the differential recoil rates
for different velocities:

dR(0, vesc)
dEr

=k0
k

R0
E0 · r

(
exp

( −Er
E0 · r

)
− exp

(
−v2

esc

v2
0

))
, (1.16)

dR(ve,∞)
dEr

= R0
E0 · r

√
π

4
v0
ve

[
erf
(
vmin + ve

v0

)
− erf

(
vmin − ve

v0

)]
, (1.17)

dR(ve, vesc)
dEr

=k0
k

[
dR(ve,∞)

dEr
− R0
E0 · r

exp
(
−v2

esc

v2
0

)]
. (1.18)

ConventionallyR0 is normalized with standard numerical expressions, ρD = 0.4GeV/c2/cm3

and v0 = 230 km/s and is expressed in the units events/kg/day:

R0 = 503
MDMT

(
σ0

1 · 10−36 cm2

)(
ρD

0.4GeV/c2/cm3

)(
v0

230 km/s

)
(1.19)

with MD,MT in GeV/c2.

1.3.4 Form factor correction

With rising momentum transfer q the de Broglie wavelength λ = h/q is no longer large
compared to the target nuclear radius, resulting in a dropping cross-section. This is
represented by the form factor that introduces a q-dependence to the cross-section:

σ(qrn) = σ0 · F 2(qrn) (1.20)

where rn is the effective nuclear radius. For large atomic masses, e.g. A = 131 for
131Xe, this effect becomes quite significant. Therefore it is important to understand
the form factor. Usually it is described as the Fourier transform of the charge density
distribution of the target nucleus. There are different models to approximate F (qrn),
a now common way to express the density profile was suggested by Helm [20]. He
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described the nucleus with a solid core density and a Gaussian falling density on the
outside, called the skin thickness. With this approximation the form factor is obtained:

F (qrn) = 3 · j1(qrn)
qrn

· exp
(
−(qs)2

2

)
(1.21)

where j1(qrn) is the first order spherical Bessel function and s = 1 fm the skin thickness.
An advantage of this formulation is the possibility to solve this equation analytically.
Fig. 1.8 shows F (qrn) for different nuclei.

rE
0 20 40 60 80 100 120 140 160 180 200

) n
(q

r
2

F

-410

-310

-210

-110

1

Xe131

Ge73

Ar40

Figure 1.8.: Form factor for different target nuclei and recoil energies

1.3.5 Detector effects

Since no detector is perfect, some limitations are present and also corrections have to
be made for obtaining the WIMP-nucleus recoil spectrum dR

dEr . There are basically two
key factors that alter the observed spectrum:

Energy detection efficiency

Especially at low energies the signal will drop below the noise level and therefore the
efficiency drops to zero. There is also the possibility that a trigger does not capture
100% of the events or that in data processing legitimate events are not taken into
account. In the analysis some cuts could not be 100% efficient in picking the events.
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Energy resolution

Every detector has a finite energy resolution. In the XENON100 detector for example,
low energies correspond to very few detected photoelectrons (see section 2 for more de-
tails and for conversion of photoelectrons to recoil energy). The resolution is dominated
by Poisson counting statistics. Low recoil energies that normally would be below the
energy threshold are only detectable because of statistical upward fluctuations. This
helps with the detection of WIMPs with low masses which only produce a small signal,
but it also broadens the spectrum for higher masses.

1.4 Indirect Detection

For indirect detection the aim is to detect particles produced after WIMP annihilations.
There are a lot of different particles which could be produced in such an annihilation
(e.g. neutrinos, γ-rays or anti-matter). It is quite challenging to verify that DM was
the cause of the detected particles. Most of the produced particles would not make
it to a detector located on earth because the atmosphere would absorb them. Only
neutrinos are able to pass the atmosphere without any influence and can be detected.

For example, the IceCube neutrino telescope, located at the south pole, is searching for
neutrino sources and might be able to detect neutrinos produced in the decay chain of
WIMP annihilations [18]. Because, such neutrinos would have a high energy, they could
be identified as a DM signal. Regions with a high amount of DM expected, like active
galactic nuclei or stars, are interesting objects for the search of neutrinos produced by
DM. Of course, IceCube is not only looking for neutrinos produced by DM. Its main
goals are the search for supernovae and other extraterrestrial neutrino sources.

1.5 Production of WIMPs

The third way to study the nature of DM is the production in large particle colliders
[16] [22]. Here particles which are forced to collide at high energies are supposed to
produce WIMPs. With the corresponding center of mass energy and cross section the
production theoretically should be possible. Since WIMPs only interact through the
weak force, they can not be detected directly after the production. An indirect method
based on the missing transverse energy respectively missing transverse momentum has
to be used, like for the indirect detection of neutrinos which also only interact weakly.
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2 The XENON100 detector
The XENON100 detector, located at the Laboratori Nazionali del Gran Sasso (LNGS)
underground laboratory in Italy, is a two-phase Time Projection Chamber (TPC) with,
as the name already suggests, liquid Xenon (LXe) as a detection medium. The detec-
tion chamber is about 30 cm in height and 30 cm in diameter (see Fig. 2.5a), the whole
detector holds about 161 kg of LXe (with about 62 kg of active material and 99 kg for
self-shielding and active veto) and is shielded by different passive materials (e.g. PTFE
and copper, see Fig. 2.5b). LXe is sensitive to scintillation and ionization produced
from particle interaction and both channels are used to get information about the de-
posited energy and nature of the particle interaction (electronic or nuclear recoil). It
is also possible to do a 3-D position reconstruction, e.g. used to reduce the electro-
magnetic background from external sources by defining a fiducial volume [5]. With all
its capabilities the XENON100 detector is currently the most sensitive experiment in
direct search for WIMP Dark Matter. In this chapter we look at the detection principle
of a TPC and also have a more detailed look in how the PMTs respond to a signal.

2.1 Xenon as a detection medium

In coherent scattering, the cross section is proportional to the square of the atomic
mass number of the target nuclei A2

T . Because of its high atomic number A and its
high density, for low recoil energies and coherent scattering at the target nucleus, xenon
yields the highest rates among the non-radioactive noble gases (see Fig. 2.1). On the
other hand the rate drops more quickly than for lighter elements due to the form factor
(as already shown on Fig. 1.8). Because the recoil energies are supposed to be very low,
xenon is the optimal target material, in Fig. 2.2 the differential recoil energy spectra
for different WIMP masses are shown. Also, what is very important (see section 2.2),
electrons can drift almost with no resistance and xenon is a natural fast scintillator.
On the cryogenic side LXe is also relatively easy to handle, it becomes liquid at -100 ◦C
and can easily be cooled by e.g. a Pulse Tube Refrigerator (PTR).

2.1.1 Scintillation of LXe

There are two different reactions caused by a particle interaction (e.g. a WIMP) within
LXe. The outcome of an interaction can be an excited state or the ionization of the Xe
atom. Both, the excited and the ionized atom, react with surrounding neutral atoms
creating excimers (excited dimers Xe∗2) and dimers (Xe+

2 ):

Xe∗ + Xe→ Xe∗2, (2.1)

Xe+ + Xe→ Xe+
2 . (2.2)
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Figure 2.1.: Differential recoil energy spectra for 131Xe, 73Ge and 40Ar for a WIMP of 100GeV and
a cross-section of 10−45 cm2.
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σ = 1 · 10−45 cm2.
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Detection principle of the XENON100 Time Projection Chamber

The excimers decay by emitting VUV (vacuum-ultraviolet) radiation with a wavelength
of 178 nm, for which xenon itself is transparent.

Xe∗2 → 2 Xe + hν (2.3)

The dimers first recombine with the electrons from the earlier ionization and are reduced
to excimers while producing heat and again, in the following disexcitation, light.

Xe+
2 + e− → Xe∗2 + Eheat (2.4)

The XENON100 detector is only sensitive to the VUV light, not to the produced heat.

2.2 Detection principle of the XENON100 Time Projec-
tion Chamber

Figure 2.3 shows the schematic buildup of a two-phase TPC like the XENON100 detec-
tor [5]. An incoming particle hitting the LXe induces a recoil leading to scintillation,
producing photons and ionization electrons (see section 2.1.1). The produced photons
hit the PMTs (which convert the photons into charge) where they are detected as the
primary scintillation signal called S1. Between the two PMT arrays, one at the top

Figure 2.3.: Principle of an interaction inside the TPC producing primary scintillation light (S1) and
proportional scintillation light (S2) (left) and the signals produced by different types of interaction
(right) [5].

and one at the bottom (see Fig. 2.4a and 2.4b), the detection chamber is located. In
this chamber between the anode and cathode meshes an electric field is applied. Not all
electrons produced during the interaction recombine with the dimers and the electrons
drift away from the interaction site because of the applied electrical field. The strength
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of the field directly influences the amount of electrons which are able to drift away
before recombination. The stronger the field the less excited dimers are there, which
will produce light through disexcitation (see (2.4)). Therefore the strength of the field
has to be chosen accordingly. The electrons are extracted into the gas phase when they
reach the surface of the liquid phase. In the gaseous phase the electrons are accelerated
because of the different relative permittivities and densities of liquid and gaseous xenon
and also the additional electrical field between the gate grid and the anode mesh. The
light produced and detected by the PMTs during this scintillation process is converted
into another charge signal, the proportional scintillation signal S2.

Both signals, the direct scintillation light (S1) and the proportional scintillation light
(S2), are detected with two PMT arrays. Because of the longer drift time of the
electrons, compared to the fast photons, there is a time difference of the S1 and S2
signal. This is translated into the z-coordinate of the interaction position. The x-y-
position is inferred by the proportional scintillation hit pattern on the top PMTs. The
full reconstruction ability of the vertex allows the fiducialization of the target volume
to e.g. further reduce background from double scatters, since WIMPs will only interact
once.

(a) Top array with 98 PMTs. (b) Bottom array with 80 PMTs.

Figure 2.4.: The 178 XENON100 PMTs divided into two arrays [5].

Different types of interactions, nuclear or electronic recoils, can be distinguished by
the different ratios of S2/S1 (see right side of Fig. 2.3). Nuclear recoils are produced
by neutrons or WIMPs (neutrons produce a WIMP-like signal which is capitalized for
calibration). Electronic recoils are produced by γ- or β-radiation hitting the TPC.
This provides an additional background discrimination possibility which depends on
the deposited energy and the applied electrical field.

In the XENON100 detector additional discrimination is done with an active LXe veto
system around the TPC chamber. The whole inner TPC is covered with LXe which
provides good self-shielding. In Fig. 2.5a the XENON100 TPC is shown. Below and on
top of the TPC chamber, which consists of PTFE because of good reflection capabilities
of VUV scintillation light, are the PMT arrays. The visible rings of PMTs are the veto
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PMTs sitting outside the active target volume inside the TPC.

In Fig. 2.5b the passive shield is shown. To reduce radioactivity from the walls and other
surrounding sources the cryostat is locked in a shield consisting of different materials.
The inner layer is made of 5 cm copper, followed by 20 cm of polyethylene and 20 cm
of lead. Three sides of the shield are also covered with 20 cm of water to reduce the
neutron background even further.

(a) Without any shielding. In the middle the
mesh for the electrical field around the PTFE
chamber can be seen.

(b) Inside the cryostat right in front of the
passive shield.

Figure 2.5.: The XENON100 detector [5].

2.3 Measurement process

To be able to interpret the measured signal, the response of the PMTs has to be
understood. More detailed information on the following elaborations can be found in
[6]. Capital Latin letters in S1 and S2 are measured quantities, lowercase letters s1 and
s2 represent the expectation values of the quantities. P will be a discrete probability
and p is a probability density function (pdf).

The process of a WIMP hitting a target nucleus and producing light and charge, leading
to the measured signals is described.

2.3.1 Generation of light and charge

The production of photons and electrons are independent statistical processes. Hence,
the probability P can be described by independent Poisson processes:

P (Nγ , Ne|Er, E) ≈ Poi(Nγ |nγ)Poi(Ne|ne), (2.5)

where Er corresponds to either nuclear or electronic recoil energies. E is the strength of
the applied drift field, Nγ , Ne are the number of the generated photons and electrons,
nγ and ne represent their expectation values.
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Effective values express the average energies needed to create a photon or an electron.
These values are called W -values, which depend on the interaction type, the electrical
drift field in the TPC and on the deposited energy. Due to field quenching the light
yield is reduced, which is expressed with a function Sr; Tr considers the loss of charge
due to recombination. The expectation values can be rewritten to

nγ(Er, E) ≈ Er
Wγ(Er, E = 0)Sr(E) (2.6)

ne(Er, E) ≈ Er
We(Er, Eref →∞)Tr(E) (2.7)

where Sr(0) = 1 and Tr(∞) = 1. For energy calibration, signals of known γ sources
are used to compare dedicated measurements of the functions Wγ , Sr and We, Tr.
For nuclear recoils (WIMP like signal) Wγ has been measured to lower energies and
therefore the primary scintillation light is used to estimate the energy scale of the
XENON100 detector.

2.3.2 Primary scintillation light (S1)

To get the full charge produced by a S1 signal the pulse is integrated. After integration
the expectation value for the primary scintillation light on PMTi (i stands for one of
the 180 PMTs) in units of photoelectrons (p.e.) with position dependent light detection
efficiency factor µi(~r) is given by

s1i(~r) ≈ nγ(Er, E)µi(~r). (2.8)

It is position dependent because not every PMT sees the same amount of light of an
interaction, which has to be corrected. Nuclear recoils that deposit an energy Enr
produce a total primary scintillation signal s1

s1(~r) =
M∑
i=1

s1i(~r) ≈ nγ(Enr, E)µ(~r) (2.9)

= EnrLy(Eee = Eref , E , ~r)× Leff (Enr, E = 0)Snr(E)
See(E) (2.10)

for a number of M PMTs and ∑i µi(~r) = µ(~r). See and Snr are field quenching factors
and represent the reduction in light yield for nuclear (nr) or electronic (ee) recoils. For
a reference γ-ray line, historically the 122 keVee line of the 57Co decay (ee =̂ electronic-
equivalent recoil energy), Ly is the measured light yield in PE/keVee for given electric
field and position:

Ly(Eee = Eref , E , ~r) = See(E)µ(~r)
Wγ(Eee = Eref , E = 0) . (2.11)
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The relative scintillation yield of nuclear recoils, with respect to the reference γ line
and zero field, is called Leff (see also Fig. 2.6):

Leff (Enr, E = 0) = Wγ(Eee = Eref , E = 0)
Wγ(Enr, E = 0) (2.12)

Figure 2.6.: Measured relative scintillation yield of nuclear recoils Leff in dependence of the recoil
energy Enr [29].

After position correction is applied, the spatially-corrected cS1 is obtained. With this
corrected value the analysis is usually done. Finally we get the detector-averaged signal
expectation value:

cs1 = Enr〈Ly〉Leff
Snr
See

(2.13)

where 〈Ly〉 is the average detector light yield. With this equation, it is now possible
to convert the measured nuclear recoil energy Enr into p.e. (S1). In Fig. 2.7 the direct
conversion is shown. Below 3 keV, because of the uncertainty of Leff , the conversion
only works with an extrapolation wich is modeled to drop to zero below 1 keV.

The generated photons Nγ are supposed to follow a Poisson distribution, the photo-
electrons Npe,i produced in PMTi follow a binomial distribution. The pdf can then be
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Figure 2.7.: Conversion of nuclear recoil energy Enr to photoelectrons p.e. (S1) with (2.13) given.

described by:

pS1,i(S1i|nγ(Er, E))dS1i =
∑
Npe,i

∑
Nγ

ppmt,i(S1i|Npe,i)dS1i

× Binom(Npe,i|Nγ , µi(~r))
× Poi(Nγ |nγ(Er, E))

=
∑
Npe,i

ppmt,i(S1i|Npe,i)× Poi(Npe,i|nγµi(~r))dS1i, (2.14)

where ppmt,i is the response of PMTi described by a Gaussian of mean value Npe,i and
width σPMTi ·

√
Npe,i. The average single-photoelectron width σPMTi is a PMT specific

value which is determined through PMT calibrations.

Summing up to a total light signal S1 = ∑M
i=1 S1i and assuming an average response

(measured through detector calibrations) of σPMT = 0.5 for all PMTs (2.14) can be
written as:

pcS1(cS1|nγ(Er, E))dcS1 ≈
∑
Npe

ppmt(cS1|Npe)× Poi(Npe|〈µ〉nγ)dcS1, (2.15)

where Npe = ∑
iNpe,i is the sum of all photoelectrons released on all the PMTs.

ppmt(cS1|Npe) has been modeled with the single photoelectron (SPE) response of a
single PMT, i.e.

ppmt(cS1|Npe) ≈ σpmt ·
√
Np.e. (2.16)

with σPMT = 0.5. The validity of this approach will be studied in section 4.
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2.3.3 Proportional scintillation light (S2)

Electrons, produced at the point of interaction, drift through the liquid xenon towards
the top PMT array because of the applied electric field. Due to impurities, charac-
teristic losses occur. At the surface of the liquid phase, extraction into the gas phase
depending on the applied extraction field takes place. In the gas phase the electrons are
further accelerated and produce the proportional scintillation light S2 and the resulting
scattering with gas atoms.

Considering all effects the secondary scintillation signal for nuclear recoils can be ex-
pressed as:

s2(~r) = Er ·Qy(Er)e−td/τeδ(x, y), (2.17)

where Qy (see also Fig. 2.8) is the charge yield of nuclear recoils at given electric field,
the exponential function represents the losses due to impurities. δ(x, y) includes the
probability which PMT can be reached by a photon, created in the gas gap at position
(x,y). There is no z dependence because the gap is small (∼2.5mm) compared to the
(x,y)-plane. It also contains corrections for scintillation gain, gas density and quantum
efficiencies of the PMTs. Analogously to the pdf of the S1 signal (see (2.15)) we assume
a Poisson distributed production of photons Nγ and a binomial distributed production
of photoelectrons Npe for every PMT:

pcS2(cS2|ne(Er, E))dcS2 =
∑
Npe

ppmt(cS2|Npe)× Poi(Npe|neδ(x, y))dcS2, (2.18)

where ppmt is the same response as in the case for the S1 signal [6].

Figure 2.8.: Measured Qy(Er) in dependence of the recoil energy Enr [8].
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2.4 Event Rate calculation

With a given WIMP-nucleus scattering rate dR/dEnr (1.18) the measured differential
nuclear recoil rate is calculated as

d2R

dS1dS2 = ε(S1, S2)
∫ dR

dEnr
p(S1, S2|Enr)dEnr

≈ ε1(S1)ε2(S2)
∫ dR

dEnr
pS1(S1|Enr)pS2(S2|Enr)dEnr (2.19)

where ε1(S1) is the combined cut acceptance coming from e.g. the different quality
cuts in data selection also used in the Profile Likelihood (PL) analysis [4]. ε2(S2) is the
S2 threshold cut which represents the trigger threshold for a valid event to be above
S2 = 150 p.e. in run 10 of the XENON100 detector (see Fig. 2.9). These acceptances
are obtained during calibration measurements of the XENON100 detector.

Figure 2.9.: Combined cut acceptance (solid blue line) and S2 threshold cut acceptance (dashed
red line). The S2 threshold cut acceptance set to 0 below 1 p.e. [7]. The green dashed line is not
from interest here.

The S2 threshold cut directly influences the S1 signal and has to be applied before
considering the Poisson distributed energy resolution. The relation between Enr and
S1 has been measured more precisely and to lower energies via Leff than the relation
between Enr and S2 via Qy, see Fig. 2.6 and 2.8.

This is also the reason the analysis is done only with the measured differential rate
expressed in the S1 signal. The two dimensional data space is reduced to be only
dependent on the S1 signal:

dR
dcS1 ≈ ε1(cS1)

∫ dR
dEnr

pcS1(cS1|Enr)
∫

S2min

ε2(S2)pS2(S2|Enr)dS2

︸ ︷︷ ︸
ε2(Enr∝cs1)

dEnr,

= ε1(cS1)
∫ dR

dEnr
ε2(Enr)pcS1(cS1|Enr)dEnr. (2.20)

24



Event Rate calculation

We now have all it takes to calculate the expected rates of DM interactions in the
XENON100 detector. The rates for a given reference cross-section σref = 10−45 cm2 are
calculated because they depend linearly on the cross-section dR

dcS1 ∝ σ. By multiplying
a factor of σχ/σref the reference cross-section can be canceled out in later calculations:

σχ
σref

· dR(mχ, σref )
dcS1 = dR(mχ, σχ)

dcS1 . (2.21)

With this, the rates for different WIMP masses only need to be calculated once, which
is a huge advantage for later programming, because the cross-section will be the only
free parameter in the beginning (see section 3.2).
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3 Bayesian Inference
Basically there are two main approaches to statistics. The frequentist, or usual called
classical approach and the Bayesian approach. Because Bayesian calculations can be
quite complicated it was not a favored approach due to the lack of computing power for
e.g. numerical integration. In the last 20 years rising computing power made it possible
to do calculations that would have been impractical earlier. This led to a rapidly
growing interest in Bayesian statistics. In this chapter the the basic philosophical
differences between these two approaches are shown, Bayes’ theorem is derived and
established and the framework used for future studies, the Bayesian Analysis Toolkit
[13], is introduced. For reference see [11] if not mentioned otherwise.

3.1 Frequentist approach

This way of looking at probability is the common way and is usually the first way to
get to know statistics. The main ideas of this approach are:

• The parameters are fixed but unknown constants. They represent the numerical
characteristics of the observed population.

• The interpretation of probability is always a long run relative frequency.

• The performance of statistical procedures is determined in the long run over an
infinite number of hypothetical repetitions of an experiment.

Because the unknown parameters are fixed no statement about their probability can
be made. Only for random quantities probability statements can be done about their
values. A sample statistic is needed, by drawing samples out of the population. The
probability distribution over all possible random samples of the population is deter-
mined (sampling distribution). The parameter of the population will also be a param-
eter of the sampling distribution. A confidence statement about the parameter can be
made, which is based on the average behavior of the procedure under all possible sam-
ples, by converting the probability statement about the statistic based on its sampling
distribution.

3.2 Bayesian interpretation of probability

The basis of the Bayesian approach is formed by the following ideas [11]:

• The parameters themselves are random variables due to the uncertainty about
their true value.
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• Inferences about the parameters are made by directly apply the rules of proba-
bility.

• Statements about the probability of a parameter must be interpreted as “degree
of belief”. The prior distribution must be subjective.

• Every person can have their own priors, considering different weights people give
to the values of the parameters. This measures the plausibility each person gives
a parameter value before observing the data.

• Revision in beliefs about parameters after getting the data is done using Bayes’theorem.
This leads to the posterior distribution, which comes from two sources: the prior
distribution and observation of the data.

With this method there is a consistent way of updating the beliefs about the parameters
by looking at given data that was actually measured. So the inference, not like in
the frequentist approach, is based on the data that actually happened and not on all
possible data sets that might have occurred or not. With the actual data given there is
nothing random left with a fixed parameter. Also the handling of nuisance parameters
(parameters of which no inference is made about but influence on the main parameters
has to be eliminated) is done in a general way. Bayesian statistics is predictive, there
is a way to easily find the conditional probability distribution of the next observation
given the sample data.

3.2.1 Conditional probability and Bayes’theorem

Consider two events, A and B, in the universe U . If event A has occurred what influence
is there on the probability that event B can occur? To answer this we have to look at
conditional probabilities. Assume event A has occurred, so everything outside A is no
longer possible, the universe U has been reduced to Ur = A. Now, only the part of B
that also lies in A, A ∩B can occur (see Fig. 3.1a).

The probability of B given A is the unconditional probability of the part of B that
is also in A multiplied by a scale factor 1/P (A) because the total probability in the
reduced universe Ur has to be 1. This leads to the conditional probability of B given
A:

P (B|A) = P (A ∩B)
P (A) . (3.1)

With the conditional probability given and knowing that for independent events P (B∩
A) = P (A)× P (B) we can also write (3.1) as

P (B|A) = P (B). (3.2)
So if A and B are independent, the probability of B occurring is not affected by
knowledge of A. For sure, things could be turned around, so the result of A given B
would be

P (A|B) = P (A ∩B)
P (B) . (3.3)

28



Bayesian interpretation of probability
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A = Ur

B

A⋂B

(a) Universe U reduced by Event A. Only
parts of B also lying in A can occur.

U
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B3⋂A

B2⋂A

B4⋂A

B1⋂A

(b) Universe U devided by n = 4 events.
Only parts of Bi (where i = 1, . . . , 4) also
lying in A can occur.

Figure 3.1.: Conditional probability (own drawings).

However, the conditions on A and B can be different. Assume B is an unobservable
event, so there is nothing known about the occurrence or nonoccurrence of B. A on
the other hand is an observable event that can either occur with B or its complement
B̄. The probability that A occurs may depend on the occurrence of B or B̄. After
clearing the fractions, (3.1) leads to the relationship for conditional probability of an
observable event given an unobservable finding the joint probabilities

P (A ∩B) =P (B)× P (A|B) and (3.4)
P (A ∩ B̄) =P (B̄)× P (A|B̄). (3.5)

This is also called the multiplication rule for probability. With conditional probability
in mind, it is known that the marginal probability of event A is the sum over its disjoint
parts:

P (A) = P (A ∩B) + P (A ∩ B̄). (3.6)

Substituting this into (3.1) yields:

P (B|A) = P (A ∩B)
P (A ∩B) + P (A ∩ B̄)

. (3.7)

Now, using the multiplication rule from (3.4) and (3.5) the final result is called Bayes’
theorem for a single event:

P (B|A) = P (A|B)× P (B)
P (A|B)× P (B) + P (A|B̄)× P (B̄)

. (3.8)

The two events B and B̄ partition the universe, since B ∪ B̄ = U but also the events
itself are distinct. Bayes’ theorem can be generalized to n events, dividing the universe
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into n parts (B1 ∪B2 · · · ∪Bn = U and Bi ∩Bj = ∅ for i 6= j), see also Fig. 3.1b:

P (Bi|A) = P (A|Bi)× P (Bi)∑n
j=1 P (A|Bj)× P (Bj)

. (3.9)

This is Bayes’ theorem as published posthumously in 1763, named after its discoverer
Thomas Bayes, an English mathematician and Presbyterian minister.

3.2.2 Bayes’ theorem for parameter estimation

For later use we identify the different parts of Bayes’ theorem to match our problem.
It will be used do estimate the parameters to match a measured data set or, in other
words, the probability of the parameters ~Θ given the data X, the posterior probability:

P(~Θ|X) = L(X|~Θ) · π(X)∫
L(X|~Θ) · π(X)d~Θ

. (3.10)

It equals the probability of the data given the parameters L(X|~Θ), the likelihood, times
the initial probability of the parameters π(X), the prior probability. It is normalized
by the integral of the likelihood times the prior probability over the allowed range of
all parameters,

∫
L(X|~Θ) ·π(X)d~Θ [13]. Note that now continuous values are assumed,

resulting in the integral in (3.10) instead of the sum in (3.9).

It can be considered as a process of learning, as the prior knowledge about the pa-
rameters is updated in the light of new data gathered resulting in posterior knowledge
(see Fig. 3.2 for illustration). The likelihood function and prior probability used for the
later calculations will be introduced in Chapter 5.2.3.

The handling of nuisance parameters in Bayesian inference is quite simple an also
straight forward. In the process of sampling with MCMC the parameters are integrated
out. Let

π(~Θ, ~λ) = π(~Θ)π(~λ|~Θ) (3.11)

be the prior pdf. The inference then will be based on the marginal posterior of ~Θ given
the data X:

P(~Θ|X) =
π(~Θ)

∫
~λ
L(~Θ, ~λ)π(~λ, ~Θ)d~λ∫

~Θ,~λ L(~Θ, ~λ)π(~Θ))π(~λ, ~Θ)d~λd~Θ
. (3.12)

This “tool” allows a large dimension of the nuisance parameter to make inference on
the parameter from interest ~Θ which can be multidimensional itself.

3.3 BAT - Bayesian Analysis Toolkit

The BAT software, coded in C++, is a framework, coming in form of a library [13]. It
provides a flexible interface for model implementation, and a fast code for numerical
calculations like maximization, marginalization and integration. It has interfaces to
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   Model  M 
parameters

Distribution of 
physical quantities y 

Prediction of 
measured quantities x

Measured 
quantities

Experiment

Theory

Modeling the experiment

knowledge update

Data processing

Figure 3.2.: The prediction of the measured quantities ~x are updated by gathering more data ~X.
During the modeling of the experiment usually nuisance parameters ~λ and extra assumptions are
added in addition to the model parameters ~Θ. [13]

other analysis tools such as ROOT [3] and offers several output formats, from ASCII
files to ROOT Trees and graphical displays. The implementation and formulation of
the models is done in form of methods which belong to different predefined classes.
For detailed information of the provided class structures and the methods see [14]. To
determine the posterior pdf MCMC is used.

3.3.1 Markov Chain Monte Carlo

As mentioned above, for obtaining the posterior probability (3.10), which can be a
complicated distribution in many dimensions, Markov Chain Monte Carlo is used. In
BAT the Metropolis MCMC algorithm [19] is implemented. This algorithm does the
following steps to map out a function f(~x):

1. At some random position ~xi the chain starts.

2. For a symmetric pdf g(~xi, ~y) a point ~y is generated.

3. For both values, ~xi and ~y, the function is calculated and compared:

• for f(~y) ≥ f(~xi) set ~xi = ~y

• otherwise a random number of a flat distribution Dflat between [0,1] is gen-
erated and set ~xi+1 = ~y if f(~y)/f(~xi) > Dflat, else set ~xi+1 = ~xi.
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4. Back to 1.

The limiting factor of this chain, for a reasonable function g(~x, ~y), is the function
f(~x). It is possible to randomly sample points (parameters of the model) according
to complicated functions (pdfs) having an unknown, but somehow calculable, analytic
form.

3.3.2 Implementation

One of the aims of BAT is to provide the user with an easy way for code implementation
for a particular model. The model class BCModel provides the infrastructure and the
links to individual algorithms and is parent to all user models.

Implementation is straightforward and is done by implementing an extended class which
inherits from BCModel. To actually define a model the following steps are necessary:

1. Each parameter Θi has to be defined together with its range by calling the method:
int AddParameter(const char * name, double min, double max)

2. Define the likelihood P(~Θ|X) by implementing the method:
double LogLikelihood(std::vector<double> params)

3. Define the prior π(X) by implementing the method:
double LogAPrioriProbability(std::vector<double> params)

To grant more numerical stability right from the beginning the natural logarithm of the
probability is returned by the methods LogLikelihood and LogAPrioriProbability.

BAT can either be used in a ROOT interactive session (e.g. a macro) or can be used
from a compiled program which is linked against the BAT libraries. It also provides a
shell script to create a skeleton for a model class with a main program together with a
makefile. The CreateProject.sh script was used to create the project for the Bayesian
analysis done in section 5.2.

3.3.3 Output

BAT provides several standard output methods:

• Text files:
When selected BAT creates a file with a summary for each model and its pa-
rameters. It contains the results of the analysis, e.g. mean and modes of the
marginalized distributions, the level of information can be set by the user. In
addition a log file for debugging is produced.

• ROOT files:
Because ROOT is widely established as an analysis framework BAT also provides
the possibility to write almost everything obtained in the analysis into a .root
file. There is a huge functionality provided by the ROOT class TFile for storing

32



BAT - Bayesian Analysis Toolkit

information. For each model a single file is produced with user defined content of
information.

• Plot files:
The drawings are also done using the ROOT functionality. Therefore every output
format supported by ROOT can be chosen to save the plots. There is a predefined
drawing style for 1-D and 2-D marginalized distributions to print them into a singe
multi-page postscript file.

With the Bayesian inference introduced, the next chapter will focus on the PMT re-
sponse. The response directly influences the measured differential energy rate spectra
and so also has impact on the calculated CLs in the Bayesian analysis.
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4 PMT response studies
To get a better understanding of the response from the PMTs and to check the model
of Poisson distributed generation of photoelectrons, followed by a Gaussian distributed
generation of photoelectrons inside the PMTs, this process is simulated and compared
to the real response of the XENON100 PMTs [6] for a neutron calibration data set.

4.1 Description of the response

An incoming amount of photons Nγ , uniformly distributed, hitting a PMT generate
Np.e. Poisson distributed photoelectrons. The probability of getting Np.e. instead of Nγ

photoelectrons is then given by

PNγ (Np.e.) = N
Np.e.
γ

Np.e.!
· exp(−Nγ). (4.1)

In the amplification process inside the PMT these Npe photoelectrons become Gaussian
distributed and form the measured signal S1:

f(S1|Np.e.) = 1√
2πσ2

· exp
(

(S1−Np.e.)2

2σ2

)
, (4.2)

where Np.e. is the expectation value and σ2 the variance (σ =
√
Np.e. · σPMT ) of the

Gaussian distribution, as shown in (2.14). In Fig. 4.1a histograms for different values of
σPMT with an expectation value < Np.e. >= 0.8 are shown. As one would expect, the
higher σPMT gets the broader gets the distribution. The average single photoelectron
response width σPMT = 0.5 has been measured in LED calibrations of the XENON100
detector [6]. The impact of different expectation values is shown in Fig. 4.1b. Since
Poisson distributions only yield positive results, for small expectation values (e.g. the
red distribution in 4.1a) a “tail” to the right and small bumps in the shape are visible
that vanish for higher values.

4.2 Simulation of the response

A small program in C++ is developed to simulate the behavior for different values of
σPMT to see its impact (see B.1). To compare the simulated data with actual mea-
surements, neutron calibration data of the XENON100 detector was used. There are
several calibration measurements done for the XENON100 detector regularly. The cal-
ibration with neutrons is done with an AmBe source. With this source the reactions
to nuclear recoils between the xenon nuclei and neutrons are studied to see what kind
of signals such interactions produce. After the calibration some isotopes of the xenon
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Figure 4.1.: PMT response simulations for expectation values and SPE widths

inside the TPC are in an excited metastable state from the interactions with the neu-
trons. They decay sending out characteristic emission lines at 164 keV for 131mXe and
236 keV (196 keV followed by a 40 keV disexcitation) for 129mXe. As disexcitation into
its ground state takes place over approximately 8 or 11 days (depending on the isotope)
the detector is illuminated uniformly. During this time all PMTs will get a light signal
and the measurement is done [5]. Figure 4.2 shows the two lines in the cS2 vs. cS1
plane as the XENON100 detector detects them. The red ellipses in the 164 keV line
(left population) indicates the 1σ, 2σ and 3σ region of the line. The second population
represents the 236 keV line.

For analysis, the detector is divided into voxels [25] (a binned volume with 16 slices,
each slice divided into 98 regions), see Fig. 4.3 for one slice and its 98 areas which follow
the pattern of the top PMT array. The comparison is done with the 164 keV line. A
histogram for each PMT (98 on the top and 80 on the bottom of the TPC) and voxel
is created and filled with the photoelectrons detected. This leads to a total of 279104
histograms for the data file. Every PMT sees a different amount of light, depending on
its position and which voxel is observed, leading to different amount of entries in the
histograms. To make this more comparable, and to reduce the amount of data, only
the mean value and the Root Mean Square (RMS) of the histograms (for simulation
and data) are taken into account. There is also a selection of empty histograms (where
PMTs did not detect any light) or noisy PMTs in the data file.

Figure 4.4a shows a 2D histogram where every point represents one histogram with its
corresponding mean value and RMS. In the Simulation, for each generated value of
photons (uniform distributed between 0 and 20) a histogram is filled with the modeled
response, see (4.1) and (4.2). This is repeated 100 times to get more statistics. In the
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first simulation the default value for σPMT = 0.5 was used.

Figure 4.2.: To visualize the event selection the measurement with activated LXe is shown. The
characteristic lines at 164 keV for 131mXe and 236 keV (40 keV + 196 keV) for 129mXe are visible
[17].

Figure 4.3.: Slice with areas for the volume binning (voxels) of the XENON100 detector. The color
scale is not from interest and can be ignored. [25]
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The discrepancy, shown in Fig. 4.4a, between data and simulation with default σPMT =
0.5 is clearly visible. To make the differences more visible and comparable a profile
of the 2-D histogram is done, see Fig. 4.4b. The same simulation was also done with
σPMT = 0.7 (see Fig. 4.5a), σPMT = 0.9 (see Fig. 4.6a) and σPMT = 1.1 (see Fig. 4.7a).
For σPMT = 0.7 the simulation still lies below the data and for σPMT = 1.1 the
simulation already is above most of the data. Out of the three values σPMT = 0.9
was the best fitting one in the range of 0 to 10 p.e. S1i mean value (i = 1, . . . , 178 for
the 178 PMTs). Why there was a different value measured for σPMT through LED
calibrations with the SPE spectrum has to be further investigated. Since the average
response was obtained with SPE spectra, calibrations with more light are planed in the
future. Also the model for the PMT response, see (2.14), may be assumed too simple
and has to be modified with more complex algorithms.
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(a) 2-D histogram for mean value and RMS
of data (blue) and simulation (red).
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(b) Profile of data (blue) and simulation
(red).

Figure 4.4.: Histogram (a) and profile (b) for data (blue) and simulation (red) with σP MT = 0.5.
In the profile on the right, the discrepancy between simulation and data is clearly visible.
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(a) 2-D histogram for mean value and RMS
of data (blue) and simulation (red).
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(b) Profile of data (blue) and simulation
(red).

Figure 4.5.: Histogram (a) and profile (b) for data (blue) and simulation (red) with σP MT = 0.7.
There is still a discrepancy between data and simulation in the profile (right) visible.
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(a) 2-D histogram for mean value and RMS
of data (blue) and simulation (red).
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(b) Profile of data (blue) and simulation
(red).

Figure 4.6.: Histogram and profile for data (blue) and simulation (red) with σP MT = 0.9. In the
range from 0 to 10 S1 mean, the simulation seems to fits the observed data in the profile (right).
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(a) 2-D histogram for mean value and RMS
of data (blue) and simulation (red).
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(b) Profile of data (blue) and simulation
(red).

Figure 4.7.: Histogram and profile for data (blue) and simulation (red) with σP MT = 1.1. The
simulation in the profile (right) starts to lay above the data, σP MT was chosen to high.

The deeper knowledge of the response of the PMTs is from big interest since the
response directly influences the signal and therefore also the likelihood function used
in the Bayesian analysis. To see the impact of a different SPE response width on the
Confidence Limit for WIMP exclusion, in section 5.3.1 a calculation for σPMT = 0.9
will be done after confirming a reasonable result with the maximum gap method and
default SPE response width σPMT = 0.5.
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5 Dark Matter exclusion limits
Since WIMPs have not been discovered yet, only upper Confidence Limits (CLs) can
be calculated for the cross-section of WIMP-nucleus interactions. A 90% CL for ex-
ample implies that for a probability of 90%, no events can be observed above a certain
cross-section. Two different methods, the maximum gap method [33] and a Bayesian
approach, for limit calculations are studied. The maximum gap method was coded
in C++ to check the results of the scatter rate calculations dR/dS1. After confirming
a reasonable result with the maximum gap method for XENON100 data finally the
Bayesian limit analysis is done. All calculations will be done with respect to the last
science run detector parameters (see [7]): an exposure of 224.5 days and fiducial volume
of 34 kg LXe will be used. The exposure has to be considered in the calculations of the
differential energy rates since they are calculated in units of events/kg/day/keV. Since
the atomic number A has an impact on the calculated recoil energy rates, it should
be noted that the in this work average isotope mass for xenon (A = 131.29) was used.
For notation simplicity instead of the corrected values cS1 and cS2, S1 and S2 will be
used if not explicitly mentioned otherwise.

5.1 Maximum gap method for limit setting

To test the developed code which follows the calculations done in section 1.3 and 2.3,
the maximum gap method described in [33] is used. This method applies to small but
unknown background together with known expected signal shapes. It does not depend
on the binning of the data, is robust to cuts on the parameter range and provides true,
but conservative classical one sided CLs.

If the background is completely known it would already be included in the expected
spectrum of a measurement. Now assume an additional unknown background deterio-
rating the data. The aim for setting an upper CL is to change the cross-section σ in the
calculations, see (2.21), of the differential event rate dR/dS1 until it will be rejected as
too high. At first, a criterion for deciding when a signal gets to high is needed. To find
the strongest (lowest) possible upper limit the region where a high signal is expected
and the background is low has to be located. In the maximum gap method the biggest
gap between two observed events (like the name of the method suggests) in the data
set is the region of interest. Here the background should be low because nothing has
been measured in between the two events, see Fig. 5.1 for example.

To apply this method, the first task is to find the maximum gap, which is the largest
of the gaps between two measured events. In the XENON100 225 live days data, two
events were observed in the benchmark region after data selection [7]. One event was
observed at 7.1 keV, the other at 7.8 keV. In this case the maximum gap is quite obvious
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and lies between the second event and the upper threshold. For example, Fig. 5.1 shows
the spectrum of a 50GeV WIMP with a reference cross-section of σref = 10−45 cm2

calculated as described in (2.20). The whole energy window in which the XENON100
detector is sensitive and searches for WIMPs goes from 6.6 keV (3 p.e.) to 43.3 keV
(30 p.e.), for conversion of Enr to p.e. see (2.13).
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Figure 5.1.: Differential recoil energy spectrum for a 50GeV WIMP. The blue (dashed) lines
indicate the whole energy range from 6.6 keV (3 p.e.) to 43.3 keV (30 p.e.), the green (dashed) lines
the two events in the benchmark region 225 live days, the lower at 7.1 keV (3.29 p.e.) and the
second at 7.8 keV (3.76 p.e.).

The number of the expected events x in this gap is then defined through the integral
of the known spectrum of the differential event rate dR/dS1:

x =
Ehigh∫
Elow

dR
dS1dS1, (5.1)

where Elow = 7.1 keV and Ehigh = 43.3 keV. With growing cross-section σ the size of the
calculated rates in the maximum gap also grows. Let µ be the total number of events
in the entire range of interest given by the detector thresholds from Emin = 6.6 keV to
Emax = 43.3 keV:

µ =
Emax∫
Emin

dR
dS1dS1. (5.2)

The CL at which large x excludes a signal is given by the equation

C0(x, µ) =
m∑
k=0

(kx− µ)ke−kx
k!

(
1 + k

µ− kx

)
, (5.3)
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where m ≤ µ/x is the greatest integer smaller or equal to the fraction of µ divided by
x. For the derivation of (5.3) see [33]. For a 90% CL, the cross-section is increased
until C0 ≥ 0.9. See appendix B.2 for the realization of this algorithm in the code.

To get the expected events in the maximum gap (x) and the whole energy window
(µ) the differential rate is integrated between the corresponding boundaries. To find
the 90% CL a loop is programmed where the cross-section in the calculation of the
differential rates is modified, and therefore the expected events obtained through the
integration. The loop runs to the point where C0 ≥ 0.9, which causes the loop to break.
The found cross-section, together with the corresponding WIMP mass, is filled into a
graph. This is done for a given array of WIMP masses that cover the range from 6 to
1000Gev/c2. Finally the WIMP exclusion limit is obtained, see Fig. 5.2 and table A.1
for the corresponding cross sections.
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Figure 5.2.: The obtained maximum gap exclusion limit (red line) and the PL limit from 225 live
days data (green line).

Since in this analysis uncertainties were not considered, the maximum gap method
calculations yield more constraining limits as the 225 live days PL limit [7]. In general
as a check for the event rate calculation the result is satisfying enough to go on to the
Bayesian inference.
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5.2 Bayesian limit

For this analysis, several parameters have to be defined first. The likelihood function
is chosen according to the profile likelihood analysis, see [4] for reference. To be able to
compare the outcome of the Bayesian calculations to the 225 live days limit all detector
parameters and the data sets are chosen accordingly. As the PL method only considers
flat prior distributions for the parameters of interest, the prior pdf was also chosen to
be flat in the Bayesian approach at first.

In Bayesian inference the prior is not constrained to be flat like in the PL method.
If prior knowledge yields a certain shape for the pdf of a parameter it can be chosen
accordingly.

5.2.1 Data set

The data is usually plotted in a 2D histogram with S1 in the x-axis and (log(S2/S1)−
log(S2/S1)ERmean) on the y-axis, called flattened space. This representation is chosen
because within one S1 bin, the variation of log(S2/S1) is small enough to be described
by a mean value (log(S2/S1)ERmean)) and therefore flattened. With the help of AmBe
calibration measurements, see Fig. 5.3, the data-space is divided into 12 bands. For
each bin in S1 (the x-axis) the events are equally shared between the 12 bands on the
y-axis, to have the same statistics within each band [6]. Each event, nuclear (signal) or
electronic recoil (background), has now an associated probability to fall into a certain
band. The calibration measurements are done to know how the detector responds to
electronic and nuclear recoils. Three different sets of data are needed for the analysis:

Nuclear recoil calibration data

To estimate how the detector responds to nuclear recoils, a calibration with neutrons
from an AmBe source is done before and after the science runs. The bands are defined
using this data (see Fig. 5.3).

Background calibration data

To be able to better characterize background events from electronic recoils a calibration
with β and γ radiation (60Co) is done twice a week (see Fig. 5.4). It is also used for
energy calibration of the detector and therefore done more often as the calibration for
nuclear recoils.

Science data

Between the calibration and background measurements, the actual DM measurements
are done, when no radioactive source is near the detector (science data, see Fig. 5.5).
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Figure 5.3.: AmBe 225 live days nuclear recoil data (red dots) with the 12 bands (black lines). By
construction, the events are equally shared between the 12 bands.

This data set is blinded to avoid biased assumptions before a whole data set is complete.
Only calibration data is used to develop cuts and acceptances.

S1 [p.e.]
5 10 15 20 25 30

E
R

 m
ea

n
lo

g(
S

2/
S

1)
 -

 lo
g(

S
2/

S
1)

-1

-0.5

0

0.5

1

Figure 5.4.: 60Co 225 live days electronic recoil data (blue dots) with the 12 bands (black lines).
Electronic recoils are the main part of the expected background events in the science data.
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Figure 5.5.: DM science data for 225 live days (black dots) with the 12 bands (black lines) after
data selection.

Basic cuts on the science data

The cuts derived from the calibration measurements, which are applied to the science
data set are e.g.:

• Basic quality cuts: Remove events that show an excessive level of noise or light.

• Selection of single-scatter events: WIMPs are expected to interact only once
inside the TPC.

• Selection of the fiducial volume: Removes noisy areas with high number of back-
ground events (outer part of the TPC volume).

• Energy selection and threshold cut on S2: Only accept events that are above a
certain energy threshold.

For more and detailed information on the cuts, see [6].

5.2.2 Calculation of the S1-spectrum

The following calculations are needed for the later implementation into the analysis
tool. They mainly follow the calculations done in in previous sections (see (2.14)), for
reference see also [6].

With the relative scintillation yield of nuclear recoils Leff (see Fig. 2.6 or 2.7) the ex-
pected number of photoelectrons for a given recoil energy Enr can be calculated (see
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also (2.13)):

cs1(Enr) = Enr〈Ly〉Leff
Snr
See

, (5.4)

where Snr = 0.95 and See = 0.58 are the quenching factors depending on the applied
electrical field in the TPC for nuclear (nr) and electronic (ee) recoils and Ly(122 keVee) =
2.28PE/keVee is the normalized light yield. Because these factors have been measured
very well the corresponding errors are small and are neglected for the analysis [4].

Following (2.20) the signal rate in events per number of photoelectronsNpe is calculated:

dR
dNpe

=
∫ dR

dEnr
(Enr;mχ)Poi(Npe|s1(Enr)) ε2(Enr)dEnr. (5.5)

Considering also the finite average single-photoelectron resolution of the XENON100
PMTs we get the S1-spectrum (analogously to (2.20)):

dR
dS1 = ε1(S1)

∑
Npe

ppmt(S1|Npe,
√
Npe · σPMT ) dR

dNpe
(5.6)

= ε1(S1)
∫ dR

dEnr
ε2(Enr)pS1(S1|Enr)dEnr.

Where pS1(S1|Enr) is defined as in (2.15). The total amount of expected signal events
Ns is calculated solving the integral:

Ns(σ) =
S1max∫
S1min

dR
dS1(mχ)dS1, (5.7)

where the integral boundaries S1min = 3 p.e. and S1max = 30 p.e. represent the en-
ergy interval considered in the analysis. The spectral shape of the normalized WIMP
spectrum fs(S1;mχ) is given by

fs(S1;mχ) =
dR
dS1(mχ)

S1max∫
S1min

dR
dS1(mχ)dS1

. (5.8)

Ns only carries the information about the amount of expected events, the information
about the shape is manifested completely in the normalized spectrum fs.

5.2.3 Construction of the likelihood function

The construction of the likelihood function follows [4]. The first term contains the
information from the signal expected in the XENON100 detector and describes the
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main measurement. The likelihood that a set of nj data points in band j emerges from
a given WIMP spectrum is given by

L1 =
k∏
j=1

Poi(nj |εjsNs + εjbNb)
nj∏
i=1

εjsNsfs(xi) + εjbNbfb(xi)
εjsNs + εjbNb

, (5.9)

where

• k : amount of bands considered

• εjs : probability for signal event to fall in band j

• εjb : probability for background event to fall in band j

• Ns : expected signal events Ns(md, σ), see (5.7)

• Nb : expected background events

• Ms : number of nuclear recoil calibration events

• Mb : number of electronic recoil calibration events

• ms
j : number of signal events in band j

• mb
j : number of background events in band j

• nj : data points in band j

• fs : normalized WIMP spectrum, see (5.8)

By construction, all εjs should have the same value equal to 1/12, when 12 bands are
modeled. As can be seen in the background data, see Fig. 5.4, εjb should decrease with
rising band number. In the last few bands almost no background events from electronic
recoils are expected.

The purpose of the following terms is to constrain the nuisance parameters εjs and εjb
in the main likelihood function L1, their precision depends on the amount of measured
calibration data:

L2 =
K∏
j=1

Poi(mj
s|εjsMs), (5.10)

L3 =
K∏
j=1

Poi(mj
b|ε

j
bMb). (5.11)

The whole likelihood function considered for the Bayesian analysis is then given by:

L =
K∏
j=1

Poi(nj |εjsNs + εjbNb)
nj∏
i=1

εjsNsfs(xi) + εjbNbfb(xi)
εjsNs + εjbNb

× Poi(mb
j |ε

j
bMb)× Poi(ms

j |εjsMs) (5.12)
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To be able to mathematically handle this equation better we apply the natural loga-
rithm and get the log-likelihood function:

logL =
K∑
j=1

( nj∑
i=1

log(εjsNsfs(xi) + εjbNbfb(xi)) +mb
j log(εjbMb) +ms

j log(εjsMs)
)

−Ns −Nb −Ms −Mb (5.13)

This is the needed form of the likelihood function for implementation in BAT. The
spectral shape of the background distribution is assumed to be flat [4]. The expected
amount of background events Nb in the range of 3-30 p.e. is estimated to be 412. For
more information on the background model see [23]. At first we only assume the
cross-section to be a parameter, with a flat (in log space) prior distribution. Only the
parameter range will have prior knowledge in form of the upper boundary of the old
XENON10 detector (predecessor to the XENON100 detector) WIMP exclusion limit,
multiplied by a factor of two. The factor was introduced to reduce the weight of this
biased assumption. The lower boundary of the parameter range will be flat and is
set way below the best known limit of the XENON100 PL analysis to 1 · 10−46 cm2.
No nuisance parameters are introduced in the beginning, the probabilities of εjs and
εjb are calculated directly from the ratio of ms

j/Ms and mb
j/Mb. The amount of ex-

pected background events Nb will be a constant. The uncertainty of Leff is also not
implemented.
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5.2.4 Implementation into the Bayesian Analysis Toolkit

With the CreateProject.sh script provided by BAT the project xsec is created. Four
files are automatically produced:

• xsec.h: Header file, contains forward declarations of variables, classes and func-
tions that are available to other files by including the header (e.g. in the xsec.cxx
and runxsec.cxx file).

• xsec.cxx: C++ file that includes the definitions and input parameters with classes
that have to be overloaded. The biggest part of the work is done here e.g. implementation
of the likelihood function, looping over the data files.

• runxsec.cxx: Contains the main function where everything is put together. All
needed instances of the classes are created, the MCMC calculation can be tuned
and also the output is defined.

• Makefile: File to compile the code and create the executable to run the analysis.

For the input, each data file (science data, AmBe calibration, 60Co calibration (back-
ground)) is stored in form of a .root file which contains 12 TGraph objects (graphs
saved with ROOT’s TGraph class) according to the 12 defined bands. To access the
data points stored in e.g. band 4 the fourth graph in each file has to be called. By
dividing the data before analysis, there is no need to recalculate the bands every time,
which saves a lot of time during the later iterations in the MCMC sampling.

The file that holds the most information and also needs the most input is the xsec.cxx
file, see appendix B.3 for a snippet of the code. The output format was chosen to
directly produce plots and text files with the results. Also, all calculated parameters
were saved as a .root file so they can be accessed for further processing. A loop over
an array of masses is done like before in the maximum gap method. For each mass the
output files are created separately, all MCMC chains run for 100000 iterations.

5.3 Results of the first Bayesian Calculations

To be able to compare the Bayesian results to the PL method, the same quantiles are
also used in the Bayesian analysis. They can be accessed through the produced .root
files. In Fig. 5.6, 5.7 and 5.8 three examples (a low mass of 6GeV, a medium mass
of 50GeV and a high mass of 1000GeV) for the resulting probability density functions
are shown. The red vertical lines mark the 90% quantile of the pdfs.
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Figure 5.6.: Probability density function for a 6GeV WIMP for the Bayesian calculations done with
BAT. The red vertical line marks the 90% quantile at a cross-section of σ = 1.37 · 10−40 cm2.
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Figure 5.7.: Probability density function for a 50GeV WIMP for the Bayesian calculations done
with BAT. The red vertical line marks the 90% quantile at a cross-section of σ = 2.22 · 10−45 cm2.
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Figure 5.8.: Probability density function for a 1000GeV WIMP for the Bayesian calculations done
with BAT. The red vertical line marks the 90% quantile at a cross-section of σ = 2.11 · 10−44 cm2.

In table A.2 all 90% quantiles with their corresponding WIMP masses are shown.
Finally in Fig. 5.9 the calculated exclusion limit with Bayesian reasoning is plotted (red
line). For comparison the plot includes the limit from the 225 live days PL analysis
(green line). Also the used parameter range for the sampled cross-section (black and
blue dashed lines) is visible.

The Bayesian limit is more constraining than the limit obtained with the PL method for
lower masses. For masses above 20GeV the limit is less constrining but the differences
are very small. Figure 5.10 shows the difference between the Bayesian and the PL limit.
Since there are no uncertainties implemented in the Bayesian calculations, the rising
difference of the limits towards lower WIMP masses is not surprising but needs further
investigation. For small recoil energies, produced by a WIMP-nucleus interaction, the
uncertainties play a bigger role which translate into a bigger difference in the limit.
With the future implementation of uncertainties on e.g. the relative scintillation yield
of nuclear recoils Leff and other nuisance parameters the limit is supposed to get less
constraining. In section 5.3.2 a first attempt to define a nuisance parameter will be
done. Instead of a constant amount of background events Nb = 412p.e. an unknown
amount will be considered.
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Figure 5.9.: Bayesian WIMP exclusion limit (red line) compared to the 225 live days PL limit (green
line) together with the upper (black dashed line) and lower (blue dashed line) parameter boundary.
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Figure 5.10.: Comparison of the Bayesian and PL 225 live days limit. An increasing discrepancy
towards lower WIMP masses, due to the bigger impact of uncertainties on low recoil energies, is
observed.
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5.3.1 Results with different single photoelectron response width

To see the impact of a different choice for the single photoelectron (SPE) response
width, a calculation with σPMT = 0.9 is done. Since for a broader differential energy
rate spectrum (see Fig. 4.1a) more upward fluctuations above the energy threshold are
possible for low recoil energies, the limit will get more constraining in these regions.
For higher WIMP masses there should be only a small effect and the limit should get
less constraining because the differential energy rates get slightly smaller when they
get broader, resulting in a overall loss in the differential energy rate. Figure 5.11 shows
the outcome with modified σPMT calculations and Fig. 5.12 shows again the difference
with respect to the PL limit.
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Figure 5.11.: Bayesian WIMP exclusion limit for the choice of σP MT = 0.9 (red line) compared to
the 225 live days PL limit (green line) together with the upper (black dashed line) and lower (blue
dashed line) parameter boundary.

As already guessed, the limit gets more constraining for low WIMP masses as more
events fluctuate over the energy threshold of the detector. Above 30GeV on the other
hand, the limit gets less constraining. Obviously it will be an important task for the
future to estimate the right SPE response width or find an improved model to better
describe it. For bigger values of σPMT a change of the exclusion limit in the favor of
small mass WIMPs can be concluded.
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Figure 5.12.: Comparison of the Bayesian (blue line) and PL 225 live days limit for σP MT = 0.9.
For direct comparison also the difference of the limit for σP MT = 0.5 (red line) is included.

5.3.2 Results with Nb as a nuisance parameter

To get a hold on the influence of Nb as a nuisance parameter, an additional calculation is
done. In Bayesian inference the nuisance parameters are treated as described in section
3.2.2. During the MCMC sampling the additional parameter, in this case Nb, is inte-
grated out by introducing it as an additional free parameter but afterwards flagging it as
a nuisance parameter. In BAT, this is done with: GetParameter(Nb)->SetNuisance(1).
Figure 5.13 shows the corresponding limit and Fig. 5.14 again shows the comparison
with respect to the 225 live days PL limit.

The comparison shows, that with a nuisance parameter included in the calculation, the
limit is mostly closer to the 225 live days PL limit, or at least the difference is the same.
In general it can be assumed, that the introduction of nuisance parameters makes the
limit less constraining because there is more freedom in the sampling. Nb is sampled
for each mass, since the program (at least for now) is not able to share parameters
between the runs. In Fig. 5.15 the resulting Nb for each mass is shown. Instead of 412
events as estimated in the background model [23] the calculations yield lower values in
a constant range of 397 to 398 events, which is less than 5% difference. Even if Nb is
sampled independently for every mass the parameter stays constant.
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Figure 5.13.: Bayesian WIMP exclusion limit with Nb as nuisance parameter (red line) compared
to the 225 live days PL limit (green line) together with the upper (black dashed line) and lower
(blue dashed line) parameter boundary.
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Figure 5.14.: Comparison of the Bayesian (blue line) and PL 225 live days limit for Nb as nuisance
parameter. For direct comparison the difference of the limit with constant Nb (red line) is included.
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Figure 5.15.: Estimated amount of background events Nb (red line) compared to the constant
value from the background model (blue line). Even if Nb is sampled independently for every mass
the parameter stays constant.

5.3.3 Influence of the lower parameter range boundary

To check the influence on the choice of the parameter range a calculation for a different
lower parameter boundary is done. Instead of assuming a flat lower parameter boundary
at 1 · 10−46 cm2, the old limit of the XENON10 detector is divided by a constant factor
of 104. Figure 5.16 shows the resulting limit together with the changed lower parameter
range boundary. The default SPE resolution σPMT = 0.5 and no nuisance parameters
were chosen. As in the studies before, in Fig. 5.17 the difference with respect to the
225 live days PL limit is shown. For better comparison the difference for a flat lower
parameter boundary is also included.

There is a noticeable difference in the limit when comparing the different choices of the
lower parameter boundary. The flat lower parameter boundary is more general instead
of assuming a “limit like” one. The assumption is more biased, but since the shape of a
limit should not change as it gets more constraining it is also not a completely random
presumption. The change of the lower parameter range boundary plays only a minor
role in this study so far.
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Figure 5.16.: Bayesian WIMP exclusion limit (red line) and PL 225 live days limit (green line)
for a different choice of the lower parameter boundary (blue dashed line) together with the upper
parameter boundary (black dashed line).
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Figure 5.17.: Comparison of the Bayesian (blue line) and PL 225 live days limit for a different
choice of the lower parameter boundary. For direct comparison the difference of the limit for a
constant lower parameter boundary (red line) is included.
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6 Conclusion and Outlook
After introducing the event rate calculation for the direct detection of WIMPs and
studies on the average response width of the XENON100 Photomultiplier Tubes, the
basic step towards a Bayesian analysis of XENON100 data was done in this work.

The average single photoelectron response σPMT was found to be higher, about 0.9
instead of 0.5, as the value gained from PMT LED calibrations. This was rather unex-
pected and is still under investigation. The impact on the calculated WIMP exclusion
limit with Bayesian inference is rather small but noticeable. Since the differential en-
ergy rate spectrum becomes broader, for low WIMP masses an improvement of the
obtained limit was observed. At higher masses, the limit becomes less constraining
because of the slight decrease in the overall differential energy rate. Future tests with
more light during the calibration or with different data sets will be done. Improving
the model of the response could also be a possible task.

After gathering the ingredients needed for the analysis, like the event rate calculation
and adopting the likelihood function from the PL analysis, a successful implemen-
tation into the Bayesian Analysis Toolkit was realized. The task to reproduce the
well-established WIMP exclusion limit of the Profile Likelihood analysis was not com-
pletely achieved. There are still too many simplifications done in the new analysis.
With the introduction of a nuisance parameter (total expected background events Nb),
in most cases less constraining limit was obtained, which is closer to the 225 live days
PL limit. As the main aspect of future investigations will not be the reproduction of
an analysis that was already done, it is an intermediate step towards an independent
and alternative approach for the analysis of XENON100 data.

The influence of a different choice for the parameter range showes a little impact on
the calculated limit. Even if the flat lower parameter boundary is more general and
less biased, the choice of a variable “limit like” lower boundary seems appropriate as it
is an additional degree of belief which is put into the analysis.

After successfully introducing the rest of the nuisance parameters and uncertainties,
the main task in the future will be to change the prior probability density function of
the parameters of interest, not assuming a flat parameter distribution (like in the PL
analysis) anymore.

During my studies to understand the model behind the detection in a Time Projec-
tion Chamber, developing a program for its analysis and exploring a new approach to
statistics, a lot of new knowledge was gained by my side.
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A Tables
A.1 Results of the maximum gap calculations

Table A.1.: Results of the maximum gap calculations.

WIMP mass [GeV] σ [cm2]
6 1.72·10−40

7 8.44·10−42

8 1.41·10−42

9 4.06·10−43

10 1.62·10−43

12 4.33·10−44

14 1.78·10−44

16 9.07·10−45

18 5.57·10−45

20 3.78·10−45

22 2.83·10−45

24 2.25·10−45

26 1.86·10−45

28 1.62·10−45

30 1.44·10−45

35 1.18·10−45

40 1.05·10−45

45 9.76·10−46

WIMP mass [GeV] σ [cm2]
50 9.38·10−46

55 9.29·10−46

60 9.29·10−46

65 9.38·10−46

70 9.57·10−46

80 1.01·10−45

90 1.08·10−45

100 1.13·10−45

130 1.34·10−45

200 1.90·10−45

300 2.72·10−45

400 3.56·10−45

500 4.39·10−45

600 5.25·10−45

700 6.09·10−45

800 6.93·10−44

900 7.81·10−44

1000 8.63·10−44
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Tables

A.2 Results of the Bayesian calculations

Table A.2.: Results of the Bayesian calculations.

WIMP mass [GeV] σ [cm2]
6 1.37·10−40

7 5.96·10−42

8 1.07·10−43

9 3.59·10−43

10 1.52·10−43

12 4.83·10−44

14 2.21·10−44

16 1.25·10−44

18 8.44·10−45

20 6.16·10−45

22 4.92·10−45

24 4.16·10−45

26 3.58·10−45

28 3.23·10−45

30 2.97·10−45

35 2.55·10−45

40 2.34·10−45

45 2.24·10−45

WIMP mass [GeV] σ [cm2]
50 2.22·10−45

55 2.23·10−45

60 2.25·10−45

65 2.28·10−45

70 2.34·10−45

80 2.47·10−45

90 2.63·10−45

100 2.75·10−45

130 3.30·10−45

200 4.64·10−45

300 6.72·10−45

400 8.73·10−42

500 1.09·10−45

600 1.30·10−44

700 1.49·10−44

800 1.68·10−44

900 1.92·10−44

1000 2.11·10−44
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B Code snippets
B.1 PMT response

This code snippet shows the implementation of the simulation for the PMT response
as described in section 4.2.

1 void simulation (){
2 ...
3 for(int iter =0 ; iter <1000 ; iter ++){ // 1000
4 int n = 100 ; // iteration steps 100
5 double ExpVal [n];
6 double filler = 0;
7
8 TH1F *his [100] ; // 100
9 for(int hi =0 ; hi <100; hi ++){ // 100

10 string his_name = GetString -> int_to_string (hi)+"_"+GetString ->←↩
int_to_string (iter);

11 string nameh1 = " hist_ ";
12 his[hi] = new TH1F( ( nameh1 + his_name ). c_str () ,"" ,2000 , -0.05 , 199.95) ;
13
14 filler = filler + 0.3 ;
15 ExpVal [hi] = filler ;
16 }
17
18 double meanGaus = 1 ; // mean s.p.e
19 double sigmaGaus = 0.9 ; // sigma s.p.e
20
21 for (int i=0; i <100 ; i++){
22 for(int j=0; j <100 ; j++){ // # entries per histogram
23 double ngamma = ExpVal [i];
24 double NPE = gRandom -> Poisson ( ngamma );
25 double gausionize = gRandom ->Gaus( meanGaus *NPE ,sqrt(NPE)*←↩

sigmaGaus );
26 his[i]->Fill( gausionize );
27 }
28 }
29 }
30 ...
31 }
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B.2 Snippets from maximum gap method

Below the implementation of the maximum gap algorithm (5.3) is shown.

1 ...
2 // get boundaries and calculate events
3 double S1lo = hrates -> GetXaxis () ->FindBin (3.);
4 double S1hi = hrates -> GetXaxis () ->FindBin (30.) ;
5 double S1gaplo = hrates -> GetXaxis () ->FindBin (gErToS1 ->Eval (7.1) );
6 double S1gaphi = hrates -> GetXaxis () ->FindBin (gErToS1 ->Eval (7.8) );
7 double intrateS1gap = hrates -> Integral (S1gaplo ,S1gaphi ," width ") ;
8 double intrateS1window = hrates -> Integral (S1lo ,S1hi ," width ") ;
9 // 224.5 live days and 34 kg LXe

10 double exposure = 224.5 * 34. ;
11
12 // start loop over sigma -----------------------------
13
14 // initialize values
15 int nnsS1 = 1; \ac{PMT} response
16 bool brS1 = true ;
17 double sigmaS1 = sigma_ref ;
18 // loop over S1
19 while ( brS1 == true && nnsS1 < ns){
20 // calculate events in whole enery window for cross section sigmaS1
21 double nu = sigmaS1 / sigma_ref * intrateS1window * exposure ;
22 // calculate events in maximum gap for cross section sigmaS1
23 double x = sigmaS1 / sigma_ref * intrateS1gap * exposure ;
24 // calcuate biggest integer smapper than nu/x
25 double j = 0.;
26 if( x > 0){
27 j = floor (\ ac{PMT} responsenu /x);
28 } else {
29 j = 0;
30 }
31 // initialize C0 and calculate its value
32 double C0 = 0. ;
33 for(int g=0;g <=j;g++){
34 double facG = TMath :: Factorial (g) ;
35 C0 += ((( pow ((g*x-nu),g))*( exp(-g*x)))/facG)*(1. + g/(nu -g*x)) ;
36 }
37 // end loop if C0 >= 0.9 and draw point for sigmaS1 into graph with ←↩

corresponding WIMP mass
38 if(C0 >= 0.9){
39 gexS1 -> SetPoint (m,m_d , sigmaS1 *1.e -36);
40 brS1 = false ;
41 }
42 sigmaS1 += 0.01* sigmaS1 ;
43 nnsS1 ++;
44 }
45 ...
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B.3 Snippets from BAT

The following code snippet shows an example for the implementation into the Bayesian
Analysis Toolkit, which is described in section 5.2.4.

1 void xsec :: DefineParameters (){
2 // cross section range in pb
3 AddParameter (" sigma ", 1.e -10 , grXe10_prior ->Eval(Mass)/1.e -36 );
4 }
5
6 // ---------------------------------------------------------
7 double xsec :: LogLikelihood ( const std :: vector <double > & parameters ){
8 // initialize log - likelihood
9 double logprob = 0.;

10 // Set sigma as parameter 0
11 double sigma = parameters [0];
12 // cross section range in pb
13 double s1Min = 3;
14 // upper threshold in p.e.
15 double s1Max = 30;
16 // # of bands
17 static const int k = 12 ;
18 double n[k];
19 // read DM data from graph grDataband [ib] for band nb
20 for(int ib = 0; ib < nb; ib ++) n[ib] = grDataband [ib]->GetN ();
21 // expected background events in all bands from 3 -30 pe
22 double Nb = 412. ;
23 // initialize signal events
24 double Ms = 0;
25 // declare array for signal events in the diffrent bands
26 double ms[k];
27 for(int ib = 0; ib < nb; ib ++) {
28 // # of all source events (NR calibration )
29 Ms += grAmBeband [ib]->GetN ();
30 // # of source events in band j
31 ms[ib] = grAmBeband [ib]->GetN ();
32 }
33 // initialize background events
34 double Mb = 0.;
35 // declare array for background events in the diffrent bands
36 double mb[k];
37 for(int ib = 0; ib < nb; ib ++) {
38 // # of all background events (ER calibration )
39 Mb += grCo60band [ib]->GetN ();
40 // # of background events in band j
41 mb[ib] = grCo60band [ib]->GetN ();
42 }
43 // reference cross section used to calculate WIMP spectra
44 double xsec = 1.e -9 ;
45 // exposre in days * kg
46 double exposure = 224.561 * 34. ;
47 // flat background spectrum
48 double fb = 1./( s1Max - s1Min );
49 // initialize variables
50 double Ns= 0., s1= 0., s2= 0., es= 0., eb= 0., fs= 0. ;
51 // calculate integral over differential rates
52 double hisint = his. Integral ( his. GetXaxis () ->FindBin ( s1Min ) , his. GetXaxis ()←↩

->FindBin ( s1Max ) ," width ");
53 for(int j =0 ; j < k ; j++){
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54 // define probability for signal event to fall in band j
55 es = ms[j]/ Ms ;
56 // define probability for background event to fall in band j
57 eb = mb[j]/ Mb ;
58 // expected events
59 Ns = sigma / xsec * hisint * exposure ;
60 // # of expected events with cross section " sigma "
61 for(int i =1 ; i < n[j] ; i++){
62 // read s1 from data points i within band j
63 grDataband [j]-> GetPoint (i,s1 ,s2) ;
64 if( hisint > 0)
65 // calculate normalized WIMP spectrum
66 fs = his. GetBinContent (his. FindBin (s1)) / hisint ;
67 else
68 // check for the integral to be positive
69 fs = 0.;
70 // likelihood function
71 logprob += log(es*Ns*fs + eb*Nb*fb) + mb[j] * log(eb*Mb) + ms[j] * log(es←↩

*Ms) ;
72 }
73 }
74 // rest of likelihood function
75 logprob = logprob - Ns - Nb - Ms - Mb ;
76 // return the log probability of posterior
77 return logprob ;
78 }
79
80 // ---------------------------------------------------------
81 double xsec :: LogAPrioriProbability ( const std :: vector <double > & parameters ){
82 // initialize log - likelihood
83 double logprob = 0. ;
84 // read parameter range
85 double dsigma = GetParameter (0) -> GetRangeWidth () ;
86 // flat prior for sigma
87 logprob += log (1./ dsigma ) ;
88 // return the log probability of prior
89 return logprob ;
90 }
91 // ---------------------------------------------------------
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