Mainz LXe TPC

Design of a two-phase Xenon TPC for study of fast scintillation in LXe dark matter detectors

Bastian Beskers Uwe Oberlack Cyril Grignon Pierre Sissol Rainer Othegraven

DPG Frühjahrsagung Göttingen 2012

Outline

- background discrimination in XENON-DM-Experiments
- Mainz LXe TPC
- experiment measurement program
- simulations

LXe interaction

LXe interaction

XENON Dark Matter

background discrimination

S2/S1 can be used to identify interaction type: electron recoil vs. nuclear recoil

scintillation efficiency

it is necessary to know scintillation efficiency and ionization yield for nuclear recoils of LXe

=> have to be measured in independent experiments

Phys. Rev. Lett. 107, 131302 (2011): E. Aprile et al. (The XENON100 Collaboration)

ionization efficiency

PRL 97, 081302 (2006); Aprile et al.

LXe scintillation pulse shape

Can PS be used to improve background discrimination in future LXe DM searches?

two excimer states

triplet ³**Σ**⁺: τ_T ~ 20 - 27 ns

singlet ${}^{1}\Sigma^{+}$: $\tau_{S} \sim 2 - 4$ ns

singlet-to-triplet ratio A_s/A_t is dependent on:

- nuclear/electronic recoil
- electrical drift field

Physical Review B - Vol.27 - No. 9, May 1983 A. Hitachi, T. Takahashi

experimental setup

Active volume:

- diameter d=53mm
- heigth h=50mm
- 1 top-, 1 bottom-PMT
- 8 APDs for x/y resolution

APDs:

- active area: 14x14 mm²
- QE ~ 30% @ 178nm
- no housing little passive material

experimental setup

compact PMTs (Hamamtsu R6041):

- 2 inch diameter
- QE > 30% @ 178 nm
- fast response: electron transit time spread t(FWHM) = 0.75 ns

5 GS/s FADC (Struck SIS3305)

- 10bit
- 2/4/8 channels
- 5/2.5/1.25 GS/s
- 1.5 GHz bandwidth

experimental program

Phase 1:

- commissioning
- fast studies of S1 (2.5GS/s) at higher energies (100-1000 keV)
- study and optimization of position reconstruction etc.

Phase 2:

- setup of a Compton-scatter experiment at low energies (2-100 keV)
- requirements & systematic errors studied in ongoing diploma thesis

Phase 3:

 neutron-scatter experiment to probe DM energy range for nuclear recoils (2-100 keV)

Geant4: position reconstruction:

- events generated randomly in x/y
- between liquid-gas-interface and anode 10k photons were generated (equivalent to ~2.5 keV electronic recoil energy)
- for each APD the number of detected photons has been saved
- different configurations of APDs have been tested:
 - Size 8x8mm², 14x14mm²
 - quantity $n_{APD} = 6, 8, 12$

Geant4: position reconstruction:

reconstruction error using 8 APDs - 14x14 mm²

- reconstruction error
 < 0.5 1.3 mm
- only 8 readout channels required
- no strong ϕ dependency

COMSOL: electrostatic field

simulated different potential distributions with same resulting potential between cathode and anode

	configuration 1	configuration 2	configuration 3	configuration 4
top shield mesh	U = 0 V	U = 0 V	U = 0 V	U = -1 kV
		РМТ	РМТ	РМТ
anode mesh	U = +5 kV	U = 0 V	U = +500 V	U = 0 V
liquid-gas-interface				
gate mesh	U = 0 V	U = -5 kV	U = -4.5 kV	U = -5 kV
cathode mesh	U = -15 kV	U = -20 kV	U = -19.5 kV	U = -20 kV
bottom shield mesh	U = 0 V	U = 0 V	U = 0 V	U = 0 V

meshes:

- pitch ~200 μm
- wires ~13µm
- T > 88%

fieldcage:

• 1 wire/mm

COMSOL: electrostatic field

simulated different potential distributions with same resulting potential between cathode and anode

COMSOL: electrostatic field

COMSOL: electrostatic field

summary of simulations

Outlook

- measuring light- and charge Yield of LXe in low-energy range (< 10 keV) for improved calibration of LXe DM experiments
- studies of fast LXe-scintillation can help improving background discrimination in future LXe DM searches

<u>Bastian Beskers</u> Uwe Oberlack Cyril Grignon Pierre Sissol Rainer Othegraven