

Capacitive liquid level measurement in the XENON1T time projection chamber

Christopher W. Geis

Johannes Gutenberg-Universität Mainz XENON collaboration

DPG Frühjahrstagung 09.03.2015

geisch@uni-mainz.de

Bundesministerium für Bildung und Forschung

Introduction

Why is a liquid level measurement in a LXE TPC needed?

Liquid-Gas- Interface:

Scope:

- Dynamic range ~5 mm for XENON1T
- understanding the size of proportional scintillation signal

$$n_{ph} \propto \left(\frac{E}{P} - 1.0\right) P x$$

- monitors thermal equilibrium
- multiple level meters in one plane allow horizontal leveling of detector

Overall measurement:

Scope:

- Dynamic range ~1.5 m for XENON1T
- monitors TPC filling process
- monitors recuperation process

[GU

Requirement specifications:

- Feasibility: Choice of capacitive liquid level measurement
- Provide a linear dependence of capacitance to LXe level to enable liquid level measurement
- Low radioactivity of all components
- Highest possible capacitance to increase signal-to-noise properties
- Highest possible capacitance change per height to keep resolution of S2 signal
- Readout with ${\sim}12.5$ m coaxial cable pair
- Small dimensions

Design specifications:

- 4 short level meters
- Dynamic range of liquid-gas interface: 5 mm \rightarrow Height of level meter 10 mm
- New or upgraded design of XENON100 SLMs \rightarrow Factor 15 higher than in XENON100

- 2 long level meters
- Dynamic range of whole TPC: 1 m
 → Height of level meter 1.5 m
- New or upgraded design of XENON100 LLMs \rightarrow Factor 2 higher than in XENON100

Short Level Meter Design

Capacitor simulation with COMSOL: - Different designs simulated: **61mn** 0mm Cylindric with square Triple Cylindric **Double Cylindric** - Parametric sweep for liquid fill height Short Level Meter Simulations 30 $\Delta C/h = 1.04 \text{ pF/m}$ - $\epsilon_{_{GXe}} \approx 1$, $\epsilon_{_{LXe}} \approx 1.96$ 25

- Selection criteria: $\Delta C/h,$ feasibility and least mass
- → Triple plate capacitor
- \rightarrow Plate thickness: 0.5 mm
- → Space between plates: d = 1 mm
- $\rightarrow C_{GXe} = 16.5 \text{ pF}, C_{LXe} = 26.9 \text{ pF}$
- → Material: OFE Copper

DPG 2015

Short Level Meter Design

Modifications for application in XENON1T TPC:

- Proximity to HV electrode meshes (anode, gate) affects the electric field inside the capacitor
- This would result in "unreal" liquid level changes if the HV of the electrodes would be changed

 \leftarrow Levelmeter in electric field of anode \rightarrow

 \rightarrow Solution: Levelmeter plates have to be shielded by an external grounded cage

DPG 2015

Christopher Geis

Short Level Meter Design

Final Design and implementation in TPC model

Assembled Short Level Meter

SLM installed on TPC top ring

Long Level Meter Design

Capacitor simulation with COMSOL:

- Different designs simulated:

- Selection criteria: $\Delta C/h$, feasibility and least mass possible

- → Double cylindric capacitor
- → Dimensions: h = 1357 mm, R = 5.5 mm, r = 3 mm
- \rightarrow Pipe wall thickness d = 0.3 mm
- $\rightarrow C_{GXe} = 138 \text{ pF}, C_{LXe} = 270 \text{ pF}$
- \rightarrow Material: Stainless steel

PCB like capacitors with vertical

or horizontal electrodes

DPG 2015

Long Level Meter Design

Implementation in TPC model

- Two PTFE pillars widened and hollowed out to host long level meters

Readout Tests

Liquid nitrogen test:

- Difficult readout of tens of pF with a pair of 15 m long cables with a parasitic capacitance of ~1.5 nF
- Two commercial readout chips tested with a SLM prototype and 15m coaxial cable
 - Smartec UTI
 - ACAM PCap02 (couldn't handle the 15m cable length)

SLM Prototype

- Filling tests possible by submersing the level meter in evaporating LN2
- Comparison to simulation results possible

 $\Delta C/h_{LXe} = 2.23 \cdot \Delta C/h_{LN2}$

Christopher Geis

Readout Tests

11/14

Readout Electronics

Summary & Outlook

Summary:

- The XENON1T liquid level will be measured by 4 small and 2 long level meters

- SLMs: Triple-plated: $\Delta C/h = 1.04 \text{ pF/mm}$
- LLMs: Double-cylindric: $\Delta C/h = 0.10 \text{ pF/mm}$
- Readout with Smartec UTI chip (RMS = 0.003 pF) allows micrometer resolution
 - SLMs: R = 3 μm
 - LLMs: R = 30 μm

Outlook:

- Finalizing the readout electronics
- Samples of level meter materials under screening
- Fabrication of TPC parts and level meters ongoing
- Cooldown tests of TPC with level meters in cold nitrogen gas in 04/2015
- Begin of installation at LNGS in Italy: End of 05/2015

Thank you! Questions?

http://xenon.physik.uni-mainz.de/

http://xenon1t.org

DPG 2015

