

Commissioning of a Dual-phase Xenon TPC and first Compton Scatter Results

Pierre Sissol

Institut für Physik Johannes Gutenberg-Universität Mainz

DPG Frühjahrstagung

09 March 2015

HELMHOLTZ ASSOCIATION

Symmetry Breaking PRISMA

Alliance for Astroparticle Physics

Motivation

DPG 2015

Pierre Sissol

Principle of the MainzTPC

z-position reconstructed by electron drift time: $z = \Delta t \cdot v_{drift}$

x/y-position position of S2 detected by a photosensor array

The MainzTPC

The MainzTPC Compton Setup

JGU

The MainzTPC Compton Setup

Ge-detector

pulse tube refrigerator + LN2 emergency cooling

collimator for γ -source

Pierre Sissol

U

JG

Measurements

JGU

First runs successfully done:

Oct 2014

First application of drift and extraction fields

Nov 2014

Test of all sensors (PMTs, APDs, Ge detector) \rightarrow no S2, no coincidence mode

Dec 2014
 S1 + S2 measurements
 First Compton scatter measurements
 (analogue coincidence trigger)

$1 \bigcirc n$ $2 \bigcirc n$ $3 \bigcirc n$ $4 \bigcirc n$ $100 \text{ mV/} \bigcirc$ $100 \text{ mV/} \bigcirc$

Outcome:

- Datasets to develop analysis routines
- Experimental prototype: identification and resolution of issues

DPG 2015

Pierre Sissol

Electron Drift Time

Drift time distribution

- all scatter angles occur
- No drift field
- No coincidence with Ge detector

Estimated LY ≤ 5 pe/keV (only bottom PMT)

Compton scatter measurement

DAQ system for Compton scattering

Scintillation Pulse Shape

Phys. Rev. B 27, 5279 1983

photon signal (arbitrary units)

1000

Pierre Sissol

total p.e.

Scintillation Pulse Shape

Bottom PMT - 3316 (Trigger)

DPG 2015

Pierre Sissol

Preparing the next run

Hardware issues:

- Crosstalk between PMTs and APDs
 - \rightarrow new shielding developed
- ✓ Liquid level oscillations → occasional disappearance of S2 signal
 - \rightarrow introduced additional connections between volumes to grant pressure exchange
- Noise sources identified: PTR controller, levelmeters

Software issues:

- Identified bugs and inconsistencies in DAQ system
 - $\rightarrow\,$ debugging and improving, working on new data format
- ✓ FADC firmware improvements for dedicated FADC onboard coincidence modes

- MainzTPC works: S1 and S2 signals measured
- First analysis results
- Changes and improvements on setup are carried out

- Next MainzTPC run coming soon with improved setup and DAQ system
- Include yet unused functionalities, such as position reconstruction
- More sophisticated data analysis (scintillation yield, pulse shape)
- Nuclear recoil measurements planned

Any questions?

Thanks to my collaborators:

Bastian Beskers Christopher Hils Melanie Scheibelhut Rainer Othegraven Cyril Grignon Uwe Oberlack

Pierre Sissol sissol@uni-mainz.de

DPG 2015

Background discrimination in Dark Matter experiments

nuclear recoil (NR) neutron, WIMP

Similar in: 2013: E. Aprile et al. (XENON100 Collab.): "Dark Matter Results from 225 Live Days from XENON100 Data"

Pierre Sissol

Backup

Backup

hChargeFinal_0 **PMT** Calibration: Entries 98024 0.5225 Mean 104 RMS 2.502 • SPE peak lies within noise peak 10³ Į Noise peak is too broad Cause yet unclear 10² Ē 10 10 15 20 25 0 5 charge [pC]

Backup

APD (green) supply voltage: 1510V

Liquid level oscillations:

- very thin connection between TPC and buffer volume
- LXe outflow → GXe pressure imbalance
- New gas connection between volumes
 → pressure compensation

Levelmeter noise

- Capacitive levelmeters
- Readout of time constant by charging / discharging

Backup

Coincidence Trigger setup

